【題目】如圖,在棱長(zhǎng)為2的正方體OABC﹣O′A′B′C′中,E,F(xiàn)分別是棱AB,BC上的動(dòng)點(diǎn).
(1)當(dāng)AE=BF時(shí),求證A′F⊥C′E;
(2)若E,F(xiàn)分別為AB,BC的中點(diǎn),求直線O′B與平面B′EF所成角的正弦值.
【答案】
(1)證明:以CC'為z軸,CO為x軸,CB為y軸建立空間直角坐標(biāo)系,如圖所示,
設(shè)F(0,y,0),∵AE=BF,∴BE=CF,∴E(y,2,0),
又A′(2,2,2),C′(0,0,2),
∴ =(﹣2,y﹣2,﹣2), =(y,2,﹣2),
∵ =﹣2y+2y﹣4+4=0,
∴ ⊥ ,∴A′F⊥C′E
(2)證明:解:E(1,2,0),F(xiàn)(0,1,0),B'(0,2,2),
, =(0,1,2),
設(shè)平面B'EF的法向量為 ,
則 ,取x=2,則z=1,y=﹣2,
又O′(2,0,2),B(0,2,0), =(﹣2,2,﹣2),
設(shè)O′B與平面B′EF所成的角為θ,
則sinθ=|cos< , >|= = ,
即直線O′B與平面B′EF所成角的正弦值為 .
【解析】(1)以CC'為z軸,CO為x軸,CB為y軸建立空間直角坐標(biāo)系,利用向量法能證明A′F⊥C′E.(2)求出平面B'EF的法向量和 ,利用向量法能求出直線O′B與平面B′EF所成角的正弦值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解空間中直線與直線之間的位置關(guān)系的相關(guān)知識(shí),掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn),以及對(duì)空間角的異面直線所成的角的理解,了解已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓 =1(a>b>0)的離心率為 .A為橢圓上異于頂點(diǎn)的一點(diǎn),點(diǎn)P滿足 = ,
(1)若點(diǎn)P的坐標(biāo)為(2, ),求橢圓的方程;
(2)設(shè)過點(diǎn)P的一條直線交橢圓于B,C兩點(diǎn),且 =m ,直線OA,OB的斜率之積﹣ ,求實(shí)數(shù)m的值;
(3)在(1)的條件下,是否存在定圓M,使得過圓M上任意一點(diǎn)T都能作出該橢圓的兩條切線,且這兩條切線互相垂直?若存在,求出定圓M;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,摩天輪的半徑為,它的最低點(diǎn)距地面的高度忽略不計(jì).地上有一長(zhǎng)度為的景觀帶,它與摩天輪在同一豎直平面內(nèi),且.點(diǎn)從最低點(diǎn)處逆時(shí)針方向轉(zhuǎn)動(dòng)到最高點(diǎn)處,記.
(1)當(dāng)時(shí),求點(diǎn)距地面的高度;
(2)試確定的值,使得取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過B(1,2)作兩條互相垂直的直線l1和l2 , l1交y軸正半軸于點(diǎn)A,l2交x軸正半軸于點(diǎn)C.
(1)若A(0,1),求點(diǎn)C的坐標(biāo);
(2)試問是否總存在經(jīng)過O,A,B,C四點(diǎn)的圓?若存在,求出半徑最小的圓的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l與拋物線y2=2px(p>0)交于A,B兩點(diǎn),D為坐標(biāo)原點(diǎn),且OA⊥OB,OD⊥AB于點(diǎn)D,點(diǎn)D的坐標(biāo)為(1,2),則p= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4tanxsin( ﹣x)cos(x﹣ )﹣ .
(1)求f(x)的定義域與最小正周期;
(2)討論f(x)在區(qū)間[﹣ , ]上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題。
(1)作出不等式x+y﹣3≤0在坐標(biāo)平面內(nèi)表示的區(qū)域(用陰影部分表示);
(2)求不等式x2﹣3x+2<0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2 (a為常數(shù))是奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)若當(dāng)x∈(1,3]時(shí),f(x)>m恒成立.求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題: ①函數(shù)y=sin( ﹣2x)是偶函數(shù);
②方程x= 是函數(shù)y=sin(2x+ )的圖象的一條對(duì)稱軸方程;
③若α、β是第一象限角,且α>β,則sinα>sinβ;
④設(shè)x1、x2是關(guān)于x的方程|logax|=k(a>0,a≠1,k>0)的兩根,則x1x2=1;
其中正確命題的序號(hào)是 . (填出所有正確命題的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com