分析 (I)利用三角函數恒等變換的應用化簡函數解析式可得f(x)=$\frac{1}{2}$sin(2x+$\frac{π}{3}$),利用三角函數周期公式即可計算得解.
(II)由已知可求sin(A+$\frac{π}{3}$)=1,結合范圍A+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{4π}{3}$),解得A,C的值,利用正弦定理可求b的值,根據三角形面積公式即可計算得解.
解答 解:(I)∵f(x)=cosxsin(x+$\frac{π}{3}$)-$\frac{\sqrt{3}}{4}$=$\frac{1}{4}$sin2x+$\frac{\sqrt{3}}{2}$×$\frac{1+cos2x}{2}$-$\frac{\sqrt{3}}{4}$=$\frac{1}{2}$sin(2x+$\frac{π}{3}$),
∴f(x)的最小正周期T=$\frac{2π}{2}$=π;
(II)∵f($\frac{A}{2}$)=$\frac{1}{2}$sin(A+$\frac{π}{3}$)=$\frac{1}{2}$,可得:sin(A+$\frac{π}{3}$)=1,
∵A∈(0,π),可得:A+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{4π}{3}$),
∴A+$\frac{π}{3}$=$\frac{π}{2}$,可得:A=$\frac{π}{6}$,
∴b=$\frac{asinB}{sinA}$=$\frac{1×\frac{\sqrt{2}}{2}}{\frac{1}{2}}$=$\sqrt{2}$,C=π-A-B=$\frac{7π}{12}$,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×$1×$\sqrt{2}$×$\frac{\sqrt{2}+\sqrt{6}}{4}$=$\frac{1+\sqrt{3}}{4}$.
點評 本題主要考查了三角函數恒等變換的應用,三角函數周期公式,正弦定理,三角形面積公式在解三角形中的綜合應用,考查了轉化思想,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com