如圖所示在△ABC中,sin2A+sin2C=sin2B+sinA.sinC
(1)求B的度數(shù).
(2)設(shè)H為△ABC的垂心,且
BH
BC
=6求AC邊長的最小值.
(1)由sin2A+sin2C=sin2B+sinA.sinC,
利用正弦定理化簡得:a2+c2=b2+ac,①
則根據(jù)余弦定理得:cosB=
a2+c2-b2
2ac

∴cosB=
1
2
,由B∈(0,180°),
得到:B=60°;
(2)6=
BH
BC
=/
BH
/•/
BC
/•cos∠CBH=/
BD
/•/
BC
/=
1
2
/
AB
/•/
BC
/=
1
2
ac
∴ac=12
∴b2=a2+c2-ac≥2ac-ac=ac=12
∴bmin=2
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知△ABC中,AB=4,AC=3,∠BAC=60°,則BC=(  )
A.
13
B.13C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,2bcosC=2a-c
(Ⅰ)求B;
(Ⅱ)若cosC=
2
3
,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,∠B=45°,b=
10
,cosC=
2
5
5

(1)求a;
(2)設(shè)AB的中點為D,求中線CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,
3
sinCcosC-cos2C=
1
2
,且c=3.
(1)求角C;
(2)若向量
m
=(1,sinA)
n
=(2,sinB)
共線,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC三個頂點的直角坐標(biāo)分別為A(3,4)、B(0,0)、C(c,0).
(1)若
AB
AC
=0
,求c的值;
(2)若c=5,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC中,下列關(guān)系式不一定成立的是( 。
A.a(chǎn)sinB=bsinAB.a(chǎn)=bcosC+ccosB
C.a(chǎn)2+b2-c2=2abcosCD.b=csinA+asinC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知a、b、c分別是△ABC的三個內(nèi)角A、B、C的對邊.
(1)若△ABC面積S△ABC=
3
2
,c=2,A=60°,求a、b的值;
(2)若a=ccosB,且b=csinA,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列的首項,公差,則的第一個正數(shù)項是( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案