已知函數(shù)f(x)=x3+ax2-x+2,(a∈R)
(1)若f(x)在(0,1)上是減函數(shù),求a的最大值;
(2)若f(x)的單調(diào)遞減區(qū)間是數(shù)學(xué)公式,求函數(shù)y=f(x)圖象過(guò)點(diǎn)(1,1)的切線(xiàn)與兩坐標(biāo)軸圍成圖形的面積.

解:(1)f′(x)=3x2+2ax-1,由題意可知,f′(x)在(0,1)上恒有f′(x)≤0,則f′(0)≤0且f′(1)≤0,得a≤-1,所以a的最大值為-1 ….(5分)
(2)∵f(x)的單調(diào)遞減區(qū)間是,∴f′(x)=3x2+2ax-1=0的兩個(gè)根為 和1,
可求得a=-1,∴f(x)=x3-x2-x+2,
①若(1,1)不是切點(diǎn),則設(shè)切線(xiàn)的切點(diǎn)為(x0,y0),(x0≠1),則有y0=3x02-2x0-1,解得x0=1(舍),x0=0,∴y0=2,k=-1
②若(1,1)是切點(diǎn),則k=f′(1)=0
綜上,切線(xiàn)方程為y=1,x+y-2=0∴這兩條切線(xiàn)方程與兩坐標(biāo)軸圍成的圖形為直角梯形
它的面積S=…..(13分)
分析:(1)先求導(dǎo)函數(shù),則問(wèn)題等價(jià)于f′(x)在(0,1)上恒有f′(x)≤0,從而問(wèn)題得解;
(2)利用f(x)的單調(diào)遞減區(qū)間可知f′(x)=3x2+2ax-1=0的兩個(gè)根為 和1,從而可求函數(shù)的解析式;由于(1,1)可能是切點(diǎn),也有可能不是切點(diǎn)故進(jìn)行分類(lèi)討論求切線(xiàn)方程,進(jìn)而求面積.
點(diǎn)評(píng):本題利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,解題的關(guān)鍵是理解并掌握函數(shù)的導(dǎo)數(shù)的符號(hào)與函數(shù)的單調(diào)性的關(guān)系,此類(lèi)題一般有兩類(lèi)題型,一類(lèi)是利用導(dǎo)數(shù)符號(hào)得出單調(diào)性,一類(lèi)是由單調(diào)性得出導(dǎo)數(shù)的符號(hào).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線(xiàn)y=f(x)在與x軸交點(diǎn)處的切線(xiàn)為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線(xiàn)y=f(x)在與x軸交點(diǎn)處的切線(xiàn)為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案