已知a=∫π(sint-cost)dt,則(x-6的展開式中的常數(shù)項(xiàng)為( )
A.20
B.-20
C.
D.-
【答案】分析:利用微積分基本定理求出a;利用二項(xiàng)展開式的通項(xiàng)公式求出展開式的通項(xiàng),令x的指數(shù)為0,求出常數(shù)項(xiàng).
解答:解:a=∫π(sint-cost)dt=(-cost-sint)|π=2,
=
展開式的通項(xiàng)為,
令6-2r=0得r=3,
所以展開式中的常數(shù)項(xiàng)為=-
故選D.
點(diǎn)評(píng):本題考查微積分基本定理、考查利用二項(xiàng)展開式的通項(xiàng)公式解決二項(xiàng)展開式的特定項(xiàng)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•河?xùn)|區(qū)二模)已知
a
=(cosα,sinα),
b
=(cosβ,sinβ)(0<α<β<π)

(1)求證:
a
+
b
a
-
b
互相垂直;
(2)若k
a
+
b
a
-k
b
大小相等(其中k為非零實(shí)數(shù)),求β-α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•內(nèi)江一模)已知
a
=(1,sinθ),
b
=(3sinθ,1),且
a
b
,則cos2θ
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),
c
=(sinβ-sinα,cosβ-cosα)
,0<α<β<π,若<
a
,
b
>=
π
3
a
c
,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(1,sinα),
b
=(2,
3
)且
a
b
,則銳角α的大小為(  )
A、
π
6
B、
π
3
C、
π
4
D、
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(cosθ,-sinθ),
b
=(cosθ,sinθ),θ∈(0,
π
2
)
,且
a
b
=-
1
2

(1)求θ的大;  
(2)若sin(x+θ)=
10
10
,x∈(
π
2
,π)
,求cosx的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案