精英家教網 > 高中數學 > 題目詳情

【題目】在四棱錐V-ABCD中,底面ABCD是正方形,側面VAD是正三角形,平面VAD⊥底面ABCD

)證明AB⊥平面VAD

)求面VAD與面VDB所成二面角的大。

【答案】)見解析(

【解析】

)因為平面VAD⊥平面ABCD,平面VAD∩平面ABCD=AD,

AB在平面ABCD內,AD⊥AB,所以AB⊥平面VAD

)設AD的中點為O,連結VO,則VO⊥底面ABCD

又設正方形邊長為1,建立空間直角坐標系如圖所示.

則,A0,0), B1,0),

D-,0,0), V0,0,);

由()知是平面VAD的法向量.設是平面VDB的法向量,則

由圖知,面VAD與面VDB所成的二面角為銳角,

故,面VAD與面VDB所成二面角的大小為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知直線l12xy20l2x2y40,點P(1, m)

)若點P到直線l1, l2的距離相等,求實數m的值;

)當m1時,已知直線l經過點P且分別與l1, l2相交于A, B兩點,若P恰好

平分線段AB,求A, B兩點的坐標及直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且經過點.

求橢圓的標準方程

為橢圓的中線,點,過點的動直線交橢圓于另一點,直線上的點滿足,求直線的交點的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,

1)若關于的不等式的解集為,求實數的值;

2)求不等式的解集;

3)若對于,恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若圓上至少有三個不同的點到直線的距離為,則直線l的傾斜角的取值范圍是( )

A.B.

C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知斜三棱柱的棱長都是,側棱與底面成60°角,側面底面.

1)求證:;

2)求平面與平面所成的銳二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在四棱臺中,底面,四邊形為菱形,,.

(1)若中點,求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出如下四個命題:①若“”為假命題,則均為假命題;②命題“若,則”的否命題為“若,則”; ③“,則”的否定是“,則”;④在中,“”是“”的充要條件.其中正確的命題的個數是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列an的前n項和Sn=2an-2(nZ+).

(1)求通項公式an;

(2)設,為數列{bn}的前n項和,求正整數k使得對任意的nZ+,均有T4Tn

(3),Rn為數列{cn}的前n項和,若對任意的nZ+,均有Rn<λλ的最小值.

查看答案和解析>>

同步練習冊答案