(本小題14分)已知函數(shù),設。
(Ⅰ)求F(x)的單調(diào)區(qū)間;
(Ⅱ)若以圖象上任意一點為切點的切線的斜率 恒成立,求實數(shù)的最小值。
(Ⅲ)是否存在實數(shù),使得函數(shù)的圖象與的圖象恰好有四個不同的交點?若存在,求出的取值范圍,若不存在,說名理由。
(1)
(2)
(3)
【解析】
試題分析:解.(Ⅰ)
由。
……3分
(Ⅱ)
當
…………………………………………7分
(Ⅲ)若的圖象與
的圖象恰有四個不同交點,
即有四個不同的根,亦即
有四個不同的根。
令,……………………10分
則
當變化時的變化情況如下表:
(-1,0) |
(0,1) |
(1,) |
||
的符號 |
+ |
- |
+ |
- |
的單調(diào)性 |
↗ |
↘ |
↗ |
↘ |
由表格知:!12分
畫出草圖和驗證可知,當時,
………………14分
考點:本試題考查了函數(shù)單調(diào)性的知識點。
點評:對于運用導數(shù)求解函數(shù)的單調(diào)區(qū)間,一般先求解定義域,再求導數(shù),然后分析導數(shù)大于零或小于零的解集得到單調(diào)區(qū)間,有參數(shù)的要加以討論。而給定函數(shù)的單調(diào)性遞增,確定參數(shù)的范圍,需要利用導數(shù)恒大于等于零,分離參數(shù)的思想求解取值范圍,這是?疾榈某S脗的方法,需要熟練的掌握。同時圖像的之間的交點問題,一般是利用轉(zhuǎn)換為方程的根的問題來處理得到,屬于中檔題。
科目:高中數(shù)學 來源:2012-2013學年北京市高三第四次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題14分)
已知等比數(shù)列滿足,且是,的等差中項.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若,,求使 成立的正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年陜西省高三上學期月考理科數(shù)學 題型:解答題
(本小題14分)已知函數(shù)的圖像與函數(shù)的圖像關于點
對稱
(1)求函數(shù)的解析式;
(2)若,在區(qū)間上的值不小于6,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年四川省高三2月月考數(shù)學理卷 題型:解答題
(本小題14分)
已知函數(shù)的圖像在[a,b]上連續(xù)不斷,定義:
,,其中表示函數(shù)在D上的最小值,表示函數(shù)在D上的最大值,若存在最小正整數(shù)k,使得對任意的成立,則稱函數(shù)為上的“k階收縮函數(shù)”
(1)若,試寫出,的表達式;
(2)已知函數(shù)試判斷是否為[-1,4]上的“k階收縮函數(shù)”,
如果是,求出對應的k,如果不是,請說明理由;
已知,函數(shù)是[0,b]上的2階收縮函數(shù),求b的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com