已知平行六面體ABCDA1B1C1D1中,∠A1AD=∠A1AB=∠BAD=60°,AA1ABAD=1,EA1D1的中點(diǎn)。

給出下列四個(gè)命題:①∠BCC1為異面直線(xiàn)CC1所成的角;②三棱錐A1ABD是正三棱錐;③CE⊥平面BB1D1D;④;⑤||=.其中正確的命題有_____________.(寫(xiě)出所有正確命題的序號(hào))
②④⑤

試題分析::①∵∠BCC1為120°,而異面直線(xiàn)AD與CC1所成的角為60°,故①錯(cuò)誤;
②三棱錐A1-ABD的每個(gè)面都為正三角形,故為正四面體,故②正確;
④根據(jù)向量加法的三角形法則,
,故④正確;
,所以CE與BD不垂直,故③錯(cuò)誤;
⑤在三角形ACC1中,
,所以||=。
點(diǎn)評(píng):本題考查了異面直線(xiàn)所成的角的定義,直線(xiàn)與平面垂直的定義,正三棱錐的定義,向量加法的三角形法則和數(shù)量積運(yùn)算性質(zhì),知識(shí)點(diǎn)較為綜合,我們應(yīng)熟練掌握每一個(gè)知識(shí)點(diǎn)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:在三棱錐中,,是直角三角形,,,,點(diǎn)分別為的中點(diǎn)。

⑴求證:
⑵求直線(xiàn)與平面所成的角的大。
⑶求二面角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,在正四棱錐S-ABCD中,的中點(diǎn),P點(diǎn)在側(cè)面△SCD內(nèi)及其邊界上運(yùn)動(dòng),并且總是保持.則動(dòng)點(diǎn)的軌跡與△組成的相關(guān)圖形最有可有是圖中的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)三棱錐中,,,

(Ⅰ)求證:平面平面
(Ⅱ)若,且異面直線(xiàn)的夾角為時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知垂直平行四邊形所在平面,若,則平行四邊形一定是(填形狀)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

、是兩條不同的直線(xiàn),是兩個(gè)不同的平面,則下列命題中不正確的是(     )
A.若,,則
B.若,,則
C.若,,則
D.若、所成的角相等,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分6分)
如圖,在邊長(zhǎng)為的菱形中,,,,、分別是的中點(diǎn).

(1)求證: 面;
(2)求證:平面⊥平面;
(3)求與平面所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,底面是正方形,側(cè)面是正三角形,且平面⊥底面

(1)求證:⊥平面
(2)求直線(xiàn)與底面所成角的余弦值;
(3)設(shè),求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線(xiàn)⊥平面,直線(xiàn)m平面,有下列命題:
⊥m;  ②∥m;
∥m;  ④⊥m
其中正確命題的序號(hào)是               

查看答案和解析>>

同步練習(xí)冊(cè)答案