已知P(x,y)滿足
x≤1
y≥1
x-2y+3≥0
,則點P到直線3x-4y-9=0的距離的最小值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用點到直線的距離公式即可得到結論.
解答: 解;作出不等式組對應的平面區(qū)域如圖:
由圖象可知當點P位于點A(1,1)時,
此時點P到直線3x-4y-9=0的距離的最小,
最小值d=
|3-4-9|
32+42
=
10
5
=2
,
故答案為:2
點評:本題主要考查線性規(guī)劃的應用以及點到直線的距離公式,作出不等式組對應的平面區(qū)域,利用數(shù)形結合是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

“開門大吉”是某電視臺推出的游戲益智節(jié)目.選手面對1-4號4扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對應的家庭夢想基金.正確回答每一扇門后,選手可自由選擇帶著獎金離開比賽,還可繼續(xù)挑戰(zhàn)后面的門以獲得更多獎金(獎金金額累加),但是一旦回答錯誤,獎金將清零,選手也會離開比賽.在一次場外調查中,發(fā)現(xiàn)參加比賽的選手多數(shù)分為兩個年齡段:20~30;30~40(單位:歲),其猜對歌曲名稱與否人數(shù)如圖所示. 
每扇門對應的夢想基金:(單位:元)
第一扇門 第二扇門 第三扇門 第四扇門
1000 2000 3000 5000
(Ⅰ)寫出2×2列聯(lián)表;判斷是否有90%的把握認為猜對歌曲名稱與否與年齡有關?說明你的理由.(下面的臨界值表供參考)
P(K2≥k) 0.10 0.05 0.025 0.010 0.005 0.001
k 2.706 3.841 5.024 6.635 7.879 10.828
(Ⅱ)若某選手能正確回答第一、二、三、四扇門的概率分別為
4
5
,
3
4
,
2
3
1
3
,正確回答一個問題后,選擇繼續(xù)回答下一個問題的概率是
1
2
,且各個問題回答正確與否互不影響.設該選手所獲夢想基金總數(shù)為ξ,求ξ的分布列及數(shù)學期望.(參考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,點(n,
Sn
n
)(n∈N*)
均在函數(shù)y=
1
2
x+
1
2
的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)設bn=
1
anan+1
,Tn是數(shù)列{bn}的前n項和,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1的棱長為2,P是AA1的中點,E是BB1上的點,則PE+EC的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y滿足約束條件
x+2y≥2
ex-y≥0
0≤x≤2
,則M(x,y)所在平面區(qū)域的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列命題:
①已知
a
, 
b
是平面內兩個非零向量,則平面內任一向量
c
都可表示為λ
a
b
,其中λ,μ∈R;
②對任意平面四邊形ABCD,點E、F分別為AB、CD的中點,則2
EF
=
AD
+
BC

③直線x-y-2=0的一個方向向量為(1,-1);
④已知
a
b
夾角為
π
6
,且
a
b
=
3
,則|
a
-
b
|的最小值為
3
-1
;
a
c
是(
a
b
)•
c
=
a
•(
b
c
)的充分條件;
其中正確的是
 
(寫出所有正確命題的編號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和是Sn=-
1
2
n2-
a8
2
n
,則使an<-2010的最小正整數(shù)n等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x=2m-1,m∈N+},B={x|x=2m+1,m∈N+},則集合A與B之間的關系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合An={x|(x-1)(x-n2-4+lnn)<0},當n取遍區(qū)間(1,3)內的一切實數(shù),所有的集合An的并集是( 。
A、(1,13-ln3)
B、(1,6)
C、(1,+∞)
D、(1,2)

查看答案和解析>>

同步練習冊答案