【題目】是定義在上的奇函數(shù),對(duì),均有,已知當(dāng)時(shí), ,則下列結(jié)論正確的是( )
A. 的圖象關(guān)于對(duì)稱 B. 有最大值1
C. 在上有5個(gè)零點(diǎn) D. 當(dāng)時(shí),
【答案】C
【解析】∵f(x)是定義在R上的奇函數(shù),對(duì)x∈R,均有f(x+2)=f(x),故函數(shù)的周期為2,則f(x)的圖象關(guān)于(1,0)點(diǎn)對(duì)稱,故A錯(cuò)誤;f(x)∈(-1,1),無(wú)最大值,故B錯(cuò)誤;整數(shù)均為函數(shù)的零點(diǎn),故f(x)在[-1,3]上有5個(gè)零點(diǎn),故C正確;當(dāng)x∈[2,3)時(shí),x-2∈[0,1),則f(x)=f(x-2)=2x-2-1,當(dāng)x=3時(shí),f(x)=0,故D錯(cuò)誤;
故選C.
點(diǎn)睛:本題是函數(shù)性質(zhì)的綜合應(yīng)用,已知對(duì)稱中心,周期能推出另一個(gè)對(duì)稱中心,根據(jù)某區(qū)間上的解析式,結(jié)合周期性,對(duì)稱性可以得到一個(gè)周期中的函數(shù)圖象,從而關(guān)于最值,零點(diǎn)等問(wèn)題都可以解決.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市舉行“中學(xué)生詩(shī)詞大賽”,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績(jī)大于90分的具有復(fù)賽資格.某校有800 名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間內(nèi),其頻率分布直方圖如圖所示.
(Ⅰ)求初賽分?jǐn)?shù)在區(qū)間內(nèi)的頻率;
(Ⅱ)求獲得復(fù)賽資格的人數(shù);
(Ⅲ)據(jù)此直方圖估算學(xué)生初賽成績(jī)的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中:
①“若,則”的否命題是“若,則”;
②“”是“”的必要非充分條件;
③“”是“或”的充分非必要條件;
④“”是“且”的充要條件.
其中正確的序號(hào)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)若曲線在處的切線方程為,求實(shí)數(shù)的值;
(2)設(shè),若對(duì)任意兩個(gè)不等的正數(shù),都有恒成立,求實(shí)數(shù)的取值范圍;
(3)若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買一定金額商品后即可抽獎(jiǎng),每次抽獎(jiǎng)都從裝有4個(gè)紅球、6個(gè)白球的甲箱和裝有5個(gè)紅球、5個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,在摸出的2個(gè)球中,若都是紅球,則獲一等獎(jiǎng);若只有1個(gè)紅球,則獲二等獎(jiǎng);若沒有紅球,則不獲獎(jiǎng).
(1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率;
(2)若某顧客有3次抽獎(jiǎng)機(jī)會(huì),記該顧客在3次抽獎(jiǎng)中獲一等獎(jiǎng)的次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表如下,頻率分布直方圖如圖:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計(jì) | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下三個(gè)關(guān)于圓錐曲線的命題中:
①設(shè)為兩個(gè)定點(diǎn),為非零常數(shù),若,則動(dòng)點(diǎn)的軌跡是雙曲線;
②方程的兩根可分別作為橢圓和雙曲線的離心率;
③雙曲線與橢圓有相同的焦點(diǎn);
④已知拋物線,以過(guò)焦點(diǎn)的一條弦為直徑作圓,則此圓與準(zhǔn)線相切,其中真命題為__________.(寫出所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(限定).
(1)寫出曲線的極坐標(biāo)方程,并求與交點(diǎn)的極坐標(biāo);
(2)射線與曲線與分別交于點(diǎn)(異于原點(diǎn)),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com