16.已知某產(chǎn)品的次品率為0.04,現(xiàn)要抽取這種產(chǎn)產(chǎn)品進(jìn)行檢驗(yàn),則要檢查到次品的概率達(dá)到0.95以上,至少要選74個.

分析 由已知可得檢查到次品的概率為:1-(1-0.04)n,令1-(1-0.04)n>0.95,解對數(shù)不等式,可得答案.

解答 解:∵某產(chǎn)品的次品率為0.04,
選取n個,抽不到次品的概率為:(1-0.04)n
則檢查到次品的概率為:1-(1-0.04)n,
令1-(1-0.04)n>0.95,
則(1-0.04)n<0.05,
即0.96n<0.05,
解得:n>log0.960.05≈73.385,
故至少要選74個,
故答案為:74

點(diǎn)評 本題考查的知識點(diǎn)是相互獨(dú)立事件概率乘法公式,對立事件概率減法公式,對數(shù)不等式的解法,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.計(jì)算:
(1)2x-10<0;
(2)求5$\sqrt{5}$3$\sqrt{{5}^{2}}$的值;
(3)lg20-lg2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,若$\overrightarrow{a}$•$\overrightarrow$>0,則△ABC的形狀為( 。
A.直角三角形B.銳角三角形C.鈍角三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知△ABC中,a=3,b=$\sqrt{6}$,A=60°,
(1)求sinC;
(2)求S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an=$\frac{{a}_{n-1}}{2-{a}_{n-1}}$(n≥2).
(1)求證:{$\frac{1}{a{\;}_{n}}$-1}為等比數(shù)列,并求出{an}的通項(xiàng)公式;
(2)若bn=$\frac{2n-1}{{a}_{n}}$,求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x2)=1og2x,則f(2)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對稱軸是直線x=$\frac{π}{3}$.
(1)求φ;
(2)求函數(shù)y=f(x)的單調(diào)減區(qū)間;
(3)畫出函數(shù)y=f(x)在區(qū)間[0,πI上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知:對?x∈R,y=(x)滿足f(a+x)=f(b-x)(其中a,b為常數(shù)),求證:y=f(x)的圖象關(guān)于直線x=$\frac{a+b}{2}$對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知正方體ABCD-A1B1C1D1的棱長為3,M,N分別是棱AA1,AB上
的點(diǎn),且AM=AN=1.
(Ⅰ)證明:M,N,C,D1四點(diǎn)共面;
(Ⅱ)求幾何體AMN-DD1C的體積.

查看答案和解析>>

同步練習(xí)冊答案