下列5個命題:

①若、都是單位向量,則;

②直角坐標平面上的x軸、y軸都是向量;

=0

④0=0

·=0

其中正確命題的個數(shù)為

[  ]

A.4個

B.3個

C.2個

D.1個

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)與g(x)的定義域為R,有下列5個命題:
①若f(x-2)=f(2-x),則f(x)的圖象自身關于直線y軸對稱;
②y=f(x-2)與y=f(2-x)的圖象關于直線x=2對稱;
③函數(shù)y=f(x+2)與y=f(2-x)的圖象關于y軸對稱;
④f(x)為奇函數(shù),且f(x)圖象關于直線x=
12
對稱,則f(x)周期為2;
⑤f(x)為偶函數(shù),g(x)為奇函數(shù),且g(x)=f(x-1),則f(x)周期為2.
其中正確命題的序號為
①②③④
①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列5個命題:
①若3cosx+4sinx=5cos(x+φ),則sinφ=
4
5
,cosφ=
3
5
;
②函數(shù)y=tan(2x+
π
3
)
關于點(
π
12
,0)
對稱;
③在△ABC中,cosA>cosB成立的充要條件是A<B;
④直線x=-
π
3
是函數(shù)y=sin(2x+
π
6
)
的圖象的一條對稱軸;
⑤將函數(shù)y=3cos(3x+
4
)
的圖象按向量
a
=(φ,0)
平移后的圖象關于原點成中心對稱,且在(-
π
12
π
12
)
上單調遞減,則|φ|的最小值為
π
12

其中正確命題是
③④⑤
③④⑤
.(請將正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列5個命題:①函數(shù)f(x)=x|x|+ax+m是奇函數(shù)的充要條件是m=0;②若函數(shù)f(x)=lg(ax+1)的定義域是{x|x<1},則a<-1;③若loga2<logb2,則
lim
n→∞
an-bn
an+bn
=1
(其中n∈N*);④圓:x2+y2-10x+4y-5=0上任意一點M關于直線ax-y-5a=2的對稱點M'也在該圓上;⑤函數(shù)y=cos|x|是周期函數(shù).其中正確結論的序號是
①④⑤
①④⑤
.(填寫你認為正確的所有結論序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)給出下列5個命題:
①0<a≤
1
5
是函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4]上為單調減函數(shù)的充要條件
②如圖所示,“嫦娥探月衛(wèi)星”沿地月轉移軌道飛向月球,在月球附近一點P進入以月球球心F為一個焦點的橢圓敘道I繞月飛行,之后衛(wèi)星在P點第二次變軌進入仍以F為一個焦點的橢圓軌道II繞月飛行,最終衛(wèi)星在P點第三次變軌進入以F為圓心的圓形軌道III繞月飛行,若用2cl和2c2分別表示橢圓軌道I和II的焦距,用2a1和2a2分別表示橢圓軌道I和II的長軸的長,則有a1-c1=a2-c2;
③y=f(x)與它的反函數(shù)y=f-1(x)的圖象若相交,則交點必在直線y=x上;
④若a∈(π,
4
),則
1
1-tanα
>1+tanα>
2tanα

⑤函數(shù)f(x)=
e-x+3
e-x+2
(e是自然對數(shù)的底數(shù))的最小值為2.
其中所有真命題的代號有
②④
②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)給出下列5個命題:
①0<a≤
1
5
是函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4]上為單調減函數(shù)的充要條件;
②如圖所示,“嫦娥探月衛(wèi)星”沿地月轉移軌道飛向月球,在月球附近一點P進入以月球球心F為一個焦點的橢圓軌道I繞月飛行,之后衛(wèi)星在P點第二次變軌進入仍以F為一個焦點的橢圓軌道II繞月飛行,最終衛(wèi)星在P點第三次變軌進入以F為圓心的圓形軌道III繞月飛行,若用2Cl和2c2分別表示摘圓軌道I和II的焦距,用2a1和2a2分別表示橢圓軌道I和II的長軸的長,則有c1a2>a1c2;
③函數(shù)y=f(x)與它的反函數(shù)y=f-1(x)的圖象若相交,則交點必在直線y=x上;
④己知函數(shù)f(x)=loga(1-ax)在(O,1)上滿足,f′(x)>0,貝U
1
1-a
>1+a>
2a
;
⑤函數(shù)f(x)=
tan2x+
(1+i)2
i
+1
tan2x+2
(x≠kπ+
π
2
),k∈Z,/為虛數(shù)單位)的最小值為2;
其中所有真命題的代號是
 

查看答案和解析>>

同步練習冊答案