分析 把原不等式化為(x+a)(x-2)≥0,討論a的取值,求出對應(yīng)不等式的解集即可.
解答 解:不等式x2+(a-2)x-2a≥0可化為
(x+a)(x-2)≥0,
當(dāng)-a=2即a=-2時,不等式為(x-2)2≥0,此時x∈R;
當(dāng)-a>2即a<-2時,解不等式得x≥-a或x≤2;
當(dāng)-a<2即a>-2時,解不等式得x≥2或x≤-a;
綜上所述:當(dāng)a>-2時,解集為x∈(-∞,-a]∪[2,+∞),
當(dāng)a=-2時,解集為x∈R,
當(dāng)a<-2時,解集為x∈(-∞,2]∪[-a,+∞).
點評 本題考查了含有字母系數(shù)的不等式的解法與應(yīng)用問題,也考查了分類討論思想的應(yīng)用問題,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | (-2,1) | C. | (1,4) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (5,10) | B. | (5,+∞) | C. | (-∞,5) | D. | (10,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[-\frac{1}{2},\frac{1}{3}]$ | B. | $[\frac{1}{3},\frac{1}{2}]$ | C. | $[-\frac{1}{3},\frac{1}{2}]$ | D. | $[-\frac{1}{2},-\frac{1}{3}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=log2(x+1) | B. | y=log2(x-1) | C. | y=log2x+1 | D. | y=log2x-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com