18.設(shè)a>0,且a≠1,已知函數(shù)f(x)=loga$\frac{1-bx}{x-1}$是奇函數(shù)
(Ⅰ)求實數(shù)b的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當x∈(1,a-2)時,函數(shù)f(x)的值域為(1,+∞),求實數(shù)a的值.

分析 (Ⅰ)因為f(x)是奇函數(shù),所以f(-x)=-f(x),進而可得實數(shù)b的值;
(Ⅱ)由(Ⅰ)可得函數(shù)的解析式,利用導(dǎo)數(shù)法,可得函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)由a-2>1得a>3,由(Ⅱ)可得:f(x)在(1,a-2)上單調(diào)遞減,從而f(a-2)=1,解得答案.

解答 解:(Ⅰ)因為f(x)是奇函數(shù),所以f(-x)=-f(x)…(1分)
從而f(-x)+f(x)=0,即${log_a}\frac{1+bx}{-x-1}+{log_a}\frac{1-bx}{x-1}=0$,
于是,(b2-1)x2=0,由x的任意性知b2-1=0,
解得b=-1或b=1(舍),
所以b=-1.…(3分)
(Ⅱ)由(Ⅰ)得$f(x)={log_a}\frac{x+1}{x-1}$,(x<-1或x>1),
∴${f^/}(x)=\frac{-2}{{({x^2}-1)lna}}$;…(5分)
當0<a<1時,f′(x)>0,即f(x)的增區(qū)間為(-∞,-1),(1,+∞);
當a>1時,f′(x)<0,即f(x)的減區(qū)間為(-∞,-1),(1,+∞);…(9分)
(Ⅲ)由a-2>1得a>3,…(11分)
所以f(x)在(1,a-2)上單調(diào)遞減,
從而f(a-2)=1,即${log_a}\frac{a-1}{a-3}=1$,
又a>3,得$a=2+\sqrt{3}$.…(13分)

點評 本題考查的知識點是函數(shù)的單調(diào)性,對數(shù)函數(shù)的圖象和性質(zhì),函數(shù)的奇偶性,函數(shù)的值域,是函數(shù)圖象和性質(zhì)的綜合應(yīng)用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.過拋物線y2=-4x的焦點,引傾斜角為120°的直線,交拋物線于A、B兩點,則△OAB的面積為$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在銳角△ABC中,角A、B、C所對的邊分別為a、b、c,且$\frac{acosB+bcosA}{c}$=$\frac{3\sqrt{5}}{5}$sinC.
(1)求cosC;
(2)若a=6,△ABC的面積為8$\sqrt{5}$,求c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.由兩個簡單幾何體構(gòu)成的組合幾何體的三視圖中,正視圖和俯視圖如右圖所示,其中正視圖中等腰三角形的高為3,俯視圖中的三角形均為等腰直角三角形,半圓直徑為2,則該幾何體的體積為( 。
A.$\frac{π}{2}+1$B.π+1C.$\frac{π}{2}+2$D.π+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.y=log${\;}_{\frac{1}{2}}$(-x2+3x-2)的增區(qū)間是[$\frac{3}{2}$,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.橢圓$\frac{x^2}{36}+\frac{y^2}{9}=1$上有動P(m,n),則m+2n的取值范圍為[-6$\sqrt{2}$,6$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1(-3,0),F(xiàn)2(3,0),直線y=kx與橢圓交于A、B兩點.
(Ⅰ)若三角形AF1F2的周長為4$\sqrt{3}$+6,求橢圓的標準方程;
(Ⅱ)若|k|>$\frac{\sqrt{2}}{4}$,且以AB為直徑的圓過橢圓的右焦點,求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.用二分法求方程2x+x-8=0的一個實數(shù)解(精確度0.1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.Sn為數(shù)列{an}的前n項和,已知an>2,且an2+4n=4Sn+1.
(1)求證:{an}為等差數(shù)列;
(2)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和.

查看答案和解析>>

同步練習冊答案