如圖,在直四棱柱ABCD-A1B1C1D1中,AB=BC,∠ABC=60°,BB1=BC=2,M為BC中點(diǎn),點(diǎn)N在CC1上.
(1)試確定點(diǎn)N的位置,使AB1⊥MN;
(2)當(dāng)AB1⊥MN時(shí),求二面角M-AB1-N的正切值.

【答案】分析:(1)建立空間直角坐標(biāo)系,利用向量的數(shù)量積求出向量的數(shù)量積為0,利用向量垂直的判斷定理列出方程,求出h的值.
(2)求出平面NAB1的一個(gè)法向量,利用向量的數(shù)量積公式求出兩個(gè)向量的夾角.
解答:解:(1)分別以BC,BB1所在直線為y,z軸,過B且與BC垂直的直線為x軸,建立空間直角坐標(biāo)系,則A(-(0,0,2),N(0,2,h).
,
=(0,1,h),
∴-1+2h=0,
∴h=
即點(diǎn)N所在位置在比線段CC1的四等分點(diǎn)且靠近C點(diǎn)處.
(2)設(shè)是平面NAB1的一個(gè)法向量),則),
同理可得平面MAB1的法向量 =(0,2,1),
∴cos,
所以二面角M-AB1-N的正切值為
點(diǎn)評(píng):解決空間中的位置關(guān)系和度量關(guān)系的方法,常利用的方法是建立空間直角坐標(biāo)系,轉(zhuǎn)換為向量來解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

18、如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分別是棱AD,AA1的中點(diǎn),F(xiàn)為AB的中點(diǎn).證明:
(1)EE1∥平面FCC1
(2)平面D1AC⊥平面BB1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分別是棱AD,AA1的中點(diǎn).
(1)設(shè)F是棱AB的中點(diǎn),證明:直線EE1∥平面FCC1;
(2)證明:平面D1AC⊥平面BB1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

15、如圖,在直四棱柱ABCD-A1B1C1D1中,A1C1⊥B1D1,E,F(xiàn)分別是AB,BC的中點(diǎn).
(1)求證:EF∥平面A1BC1;
(2)求證:平面D1DBB1⊥平面A1BC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1,F(xiàn)分別是棱AD,AA1,AB的中點(diǎn).
(1)證明:直線EE1∥平面FCC1;
(2)求二面角B-FC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•撫州模擬)如圖,在直四棱柱ABCD-A1B1C1D1中,AB=BC,∠ABC=60°,BB1=BC=2,M為BC中點(diǎn),點(diǎn)N在CC1上.
(1)試確定點(diǎn)N的位置,使AB1⊥MN;
(2)當(dāng)AB1⊥MN時(shí),求二面角M-AB1-N的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案