13.函數(shù)f(x)=log2x+x-2的零點(diǎn)所在區(qū)間為[m,m+1](m∈Z),則m的值為( 。
A.-1B.0C.1D.2

分析 通過(guò)選項(xiàng)m的值,回代驗(yàn)證即可.

解答 解:當(dāng)m=-1,不滿足函數(shù)的定義域,所以不正確;
當(dāng)m=0時(shí),函數(shù)f(x)=log2x+x-2的零點(diǎn)所在區(qū)間為[0,1],x>0,x→0時(shí),f(x)<0,f(1)=-1<0,不滿足題意;
當(dāng)m=1時(shí),函數(shù)f(x)=log2x+x-2的零點(diǎn)所在區(qū)間為[1,2],f(2)=1+2-2>0,f(1)=-1<0,
滿足零點(diǎn)判定定理,所以m=1正確;
當(dāng)m=2時(shí),函數(shù)f(x)=log2x+x-2的零點(diǎn)所在區(qū)間為[2,3],f(2)=1+2-2>0,f(3)>0,
不滿足零點(diǎn)判定定理,所以m=2不正確;
故選:C.

點(diǎn)評(píng) 本題考查零點(diǎn)判定定理的應(yīng)用,也考查不等式組轉(zhuǎn)化求解,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)y=cos(2x-$\frac{π}{3}$)的最小正周期是( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.將函數(shù)y=cos2x的圖象向右平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,所得圖象的函數(shù)解析式為( 。
A.y=cos(2x+$\frac{π}{6}$)B.y=cos(2x+$\frac{π}{3}$)C.y=cos(2x-$\frac{π}{6}$)D.y=cos(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果為( 。
A.18B.20C.21D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知x>0,則x+$\frac{4}{x}$-1的最小值是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)某地若干戶家庭的年收入x(單位:萬(wàn)元)和年飲食支出y(單位:萬(wàn)元),調(diào)查顯示x與y具有線性相關(guān)關(guān)系,并由調(diào)查數(shù)據(jù)得到y(tǒng)對(duì)x的回歸直線方程為:$\widehat{y}$=0.254x+0.321.由回歸直線方程可知,家庭年收入每增加1萬(wàn)元,則年飲食支出平均增加( 。
A.0.254萬(wàn)元B.0.321萬(wàn)元C.0.575萬(wàn)元D.-0.254萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合A={1,2,3,4},B={1,3,5},則A∪B等于( 。
A.{1,3}B.{1,2,3,4,5}C.{2,4}D.{1,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖1,在Rt△ABC中,∠ABC=90°,D為AC中點(diǎn),AE⊥BD于E(不同于D),延長(zhǎng)AE交BC于F,將△ABD沿BD折起,得到三棱錐A1-BCD,如圖2所示.
(1)求證:BD⊥A1F;
(2)若圖1中,AB=2,BC=2$\sqrt{3}$,圖2中M是FC的中點(diǎn),求點(diǎn)M到平面A1EF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.用二分法求方程x2-10=0的近似根的算法中要用哪種算法結(jié)構(gòu)( 。
A.順序結(jié)構(gòu)B.條件結(jié)構(gòu)C.循環(huán)結(jié)構(gòu)D.以上都用

查看答案和解析>>

同步練習(xí)冊(cè)答案