已知斜率為-
2
2
的直線與橢圓
x2
a2
+
y2
b2
=1,(a>b>0)交于兩點,若這兩點在x軸的射影恰好是橢圓的焦點,則e為( 。
A、
1
3
B、
1
2
C、
3
3
D、
2
2
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:先根據(jù)題意表示出兩個焦點的交點坐標,代入橢圓方程,兩邊乘2a2b2,求得關(guān)于
c
a
的方程求得e.
解答: 解:由題意知,兩個交點橫坐標是-c,c,所以兩個交點分別為(-c,
2
2
c),(c,-
2
2
c),
代入橢圓
c2
a2
+
c2
2b2
=1
兩邊乘2a2b2,則c2(2b2+a2)=2a2b2
∵b2=a2-c2
c2(3a2-2c2)=2a4-2a2c2
2a4-5a2c2+2c4=0
(2a2-c2)(a2-2c2)=0
c2
a2
=2,或
1
2

∵0<e<1
∴e=
c
a
=
2
2

故選:D.
點評:本題主要考查了橢圓的簡單性質(zhì).考查了橢圓方程中a,b和c的關(guān)系.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是(  )
A、y=x3
B、y=2x
C、y=ln|x|
D、y=
1
x 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若A={x∈N*|x<25},B={y|y=
x
,x∈A},則A∩B=( 。
A、{0,1,2,3,4}
B、{2,3,4,5}
C、{0,2,3,4}
D、{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

連擲兩次骰子得到的點數(shù)分別為m,n,記
a
=(m,n),
b
=(1,-1),
a
b
的夾角為θ,θ∈(0,
π
2
]的概率為( 。
A、
1
6
B、
7
12
C、
1
12
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出以下四個說法:
①繪制頻率分布直方圖時,各小長方形的面積等于相應各組的組距;
②在刻畫回歸模型的擬合效果時,相關(guān)指數(shù)R2的值越大,說明擬合的效果越好;
③設(shè)某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為
y
=0.85x-85.71說明若該大學某女生身高增加1cm,則其體重約增加0.85kg;
④對分類變量X與Y,若它們的隨機變量K2的觀測值k越小,則判斷“X與Y有關(guān)系”的把握程度越大.其中正確的說法是(  )
A、①④B、②④C、①③D、②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=cosxcos(x-
π
4
)的最小正周期是( 。
A、
π
2
B、π
C、2π
D、4π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|log3x|,正實數(shù)m,n滿足m<n,且f(m)=f(n),若f(x)在區(qū)間[m,n2]上的最大值為2,則m+n=( 。
A、
82
9
B、
28
9
C、
28
3
D、
10
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1,a32=9a2a6,設(shè)bn=log
1
3
an,n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設(shè){bn}的前n項和為Sn,求數(shù)列{
1
Sn
}(n∈N*)的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
.
a
=(cos
B
2
1
2
)與向量
.
b
=(
1
2
,cos
B
2
)共線,其中A、B、C是△ABC的內(nèi)角.
(Ⅰ)求角B的大小
(Ⅱ)若cosC=
3
5
,求cosA的值.

查看答案和解析>>

同步練習冊答案