【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程是
,以極點為原點
,極軸為
軸正半軸(兩坐標(biāo)系取相同的單位長度)的直角坐標(biāo)系
中,曲線
的參數(shù)方程為:
(
為參數(shù)).
(1)求曲線的直角坐標(biāo)方程與曲線
的普通方程;
(2)將曲線經(jīng)過伸縮變換
后得到曲線
,若
分別是曲線
和曲線
上的動點,求
的最小值.
【答案】見解析
【解析】(1)∵的極坐標(biāo)方程是
,∴
,整理得
,∴
的直角坐標(biāo)方程為
.……3分
曲線:
,∴
,故
的普通方程為
.……5分
(2)將曲線經(jīng)過伸縮變換
后得到曲線
的方程為
,則曲線
的參數(shù)方程為
(
為參數(shù)).設(shè)
,則點
到曲線
的距離為
.
當(dāng)時,
有最小值
,所以
的最小值為
.……10分
【命題意圖】本題主要考查極坐標(biāo)系與參數(shù)方程的相關(guān)知識,涉及極坐標(biāo)方程與直角坐標(biāo)方程的互化、參數(shù)方程與普通方程的互化等基礎(chǔ)知識,意在考查轉(zhuǎn)化與化歸能力、基本運算能力,方程思想與數(shù)形結(jié)合思想.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A,B,C的坐標(biāo)分別為A(3,0),B(0,3),C(cos α,sin α),α∈.
(1)若||=|
|,求角α的值;
(2)若=-1,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知離心率為的橢圓
過點
,點
分別為橢圓的左、右焦點,過
的直線
與
交于
兩點,且
.
(1)求橢圓的方程;
(2)求證:以 為直徑的圓過坐標(biāo)原點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】節(jié)日前夕,小李在家門前的樹上掛了兩串彩燈,這兩串彩燈的第一次閃亮相互獨立,且都在通電后的4秒內(nèi)任一時刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮,那么這兩串彩燈同時通電后,它們第一次閃亮的時候相差不超過2秒的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足an+1+(﹣1)nan=2n﹣1,則{an}的前60項和為( )
A. 3690 B. 3660 C. 1845 D. 1830
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點E、F、G分別是正方體ABCD-A1B1C1D1的棱AB、BC、B1C1的中點,如圖所示,則下列命題中的真命題是________(寫出所有真命題的編號).
①以正方體的頂點為頂點的三棱錐的四個面中最多只有三個面是直角三角形;
②過點F、D1、G的截面是正方形;
③點P在直線FG上運動時,總有AP⊥DE;
④點Q在直線BC1上運動時,三棱錐A-D1QC的體積是定值;
⑤點M是正方體的平面A1B1C1D1內(nèi)的到點D和C1距離相等的點,則點M的軌跡是一條線段.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式ax2+(1﹣a)x﹣1>0
(1)當(dāng)a=2時,求不等式的解集.
(2)當(dāng)a>﹣1時.求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四面體ABCD的棱長為2,棱AD與平面α所成的角θ∈[ ,
],且頂點A在平面α內(nèi),B,C,D均在平面α外,則棱BC的中點E到平面α的距離的取值范圍是( )
A.[ ,1]
B.[ ,1]
C.[ ,
]
D.[ ,
]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com