【題目】[選修4—4:坐標系與參數(shù)方程]

在直角坐標系中,曲線的方程為.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)求的直角坐標方程;

2)若有且僅有三個公共點,求的方程.

【答案】 (1)

2)綜上,所求的方程為

【解析】分析:(1)就根據(jù)以及,將方程中的相關的量代換,求得直角坐標方程

(2)結合方程的形式,可以斷定曲線是圓心為,半徑為的圓,是過點且關于軸對稱的兩條射線,通過分析圖形的特征,得到什么情況下會出現(xiàn)三個公共點,結合直線與圓的位置關系,得到k所滿足的關系式,從而求得結果.

詳解:(1)的直角坐標方程為

(2)由(1)知是圓心為,半徑為的圓

由題設知,是過點且關于軸對稱的兩條射線軸右邊的射線為,軸左邊的射線為由于在圓的外面,故有且僅有三個公共點等價于只有一個公共點且有兩個公共點,或只有一個公共點且有兩個公共點

只有一個公共點時,所在直線的距離為,所以,故

經(jīng)檢驗,當時,沒有公共點;當時,只有一個公共點,有兩個公共點

只有一個公共點時,所在直線的距離為,所以,故

經(jīng)檢驗,當時,沒有公共點;當時,沒有公共點

綜上,所求的方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了研究高中學生對鄉(xiāng)村音樂的態(tài)度(喜歡和不喜歡兩種態(tài)度)與性別的關系,運用2×2列聯(lián)表進行獨立性檢驗,經(jīng)計算K2=8.01,附表如下:

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

參照附表,得到的正確的結論是(  )

A. 有99%以上的把握認為“喜歡鄉(xiāng)村音樂與性別有關”

B. 有99%以上的把握認為“喜歡鄉(xiāng)村音樂與性別無關”

C. 在犯錯誤的概率不超過0.1%的前提下,認為“喜歡鄉(xiāng)村音樂與性別有關”

D. 在犯錯誤的概率不超過0.1%的前提下,認為“喜歡鄉(xiāng)村音樂與性別無關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一位數(shù)學老師在黑板上寫了三個向量,,其中都是給定的整數(shù).老師問三位學生這三個向量的關系,甲回答:“平行,且垂直”,乙回答:“平行”,丙回答:“不垂直也不平行”,最后老師發(fā)現(xiàn)只有一位學生判斷正確,由此猜測的值不可能為( )

A. , B. C. , D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大型水果超市每天以元/千克的價格從水果基地購進若干水果,然后以元/千克的價格出售,若有剩余,則將剩下的水果以元/千克的價格退回水果基地,為了確定進貨數(shù)量,該超市記錄了水果最近天的日需求量(單位:千克),整理得下表:

日需求量

頻數(shù)

天記錄的各日需求量的頻率代替各日需求量的概率.

(1)求該超市水果日需求量(單位:千克)的分布列;

(2)若該超市一天購進水果千克,記超市當天水果獲得的利潤為(單位:元),求的分布列及其數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國家邊防安全條例規(guī)定:當外輪與我國海岸線的距離小于或等于海里時,就會被警告.如圖,設是海岸線上距離海里的兩個觀察站,滿足,一艘外輪在點滿足,.

(1),滿足什么關系時,就該向外輪發(fā)出警告令其退出我國海域?

(2)當時,間處于什么范圍內(nèi)可以避免使外輪進入被警告區(qū)域?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正三角形的邊長為2,將它沿高翻折,使點與點間的距離為1,此時四面體外接球的表面積是________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益(單位:萬元)繪制成如圖所示的頻率分布直方圖.由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的.

廣告投入/萬元

1

2

3

4

5

銷售收益/萬元

2

3

2

5

7

(Ⅰ)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

(Ⅱ)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到上表:

表中的數(shù)據(jù)顯示之間存在線性相關關系,求關于的回歸方程;

(Ⅲ)若廣告投入萬元時,實際銷售收益為萬元,求殘差.

附:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于直線以及平面,下面命題中正確的是( )

A. ,則

B. ,則

C. ,則

D. ,且,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學將100名髙一新生分成水平相同的甲、乙兩個平行班”,每班50.陳老師采用A、B兩種不同的教學方式分別在甲、乙兩個班級進行教改實驗.為了解教學效果,期末考試后,陳老師對甲、乙兩個班級的學生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為成績優(yōu)秀

 

0.05

0.01

0.001

 

3.841

6.635

10.828

(I)從乙班隨機抽取2名學生的成績,成績優(yōu)秀的個數(shù)為,求的分布列和數(shù)學期望;

(II)根據(jù)頻率分布直方圖填寫下面2 x2列聯(lián)表,并判斷是否有95%的把握認為:“成績優(yōu)秀與教學方式有關.

甲班A方式)

乙班(B方式)

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

附:

查看答案和解析>>

同步練習冊答案