【題目】隨著互聯(lián)網(wǎng)的興起,越來(lái)越多的人選擇網(wǎng)上購(gòu)物.某購(gòu)物平臺(tái)為了吸引顧客,提升銷售額,每年雙十一都會(huì)進(jìn)行某種商品的促銷活動(dòng).該商品促銷活動(dòng)規(guī)則如下:①“價(jià)由客定”,即所有參與該商品促銷活動(dòng)的人進(jìn)行網(wǎng)絡(luò)報(bào)價(jià),每個(gè)人并不知曉其他人的報(bào)價(jià),也不知道參與該商品促銷活動(dòng)的總?cè)藬?shù);②報(bào)價(jià)時(shí)間截止后,系統(tǒng)根據(jù)當(dāng)年雙十一該商品數(shù)量配額,按照參與該商品促銷活動(dòng)人員的報(bào)價(jià)從高到低分配名額;③每人限購(gòu)一件,且參與人員分配到名額時(shí)必須購(gòu)買.某位顧客擬參加2019雙十一該商品促銷活動(dòng),他為了預(yù)測(cè)該商品最低成交價(jià),根據(jù)該購(gòu)物平臺(tái)的公告,統(tǒng)計(jì)了最近5年雙十一參與該商品促銷活動(dòng)的人數(shù)(見(jiàn)下表)
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份編號(hào)t | 1 | 2 | 3 | 4 | 5 |
參與人數(shù)(百萬(wàn)人) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)由收集數(shù)據(jù)的散點(diǎn)圖發(fā)現(xiàn),可用線性回歸模型模擬擬合參與人數(shù)(百萬(wàn)人)與年份編號(hào)之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程:,并預(yù)測(cè)2019年雙十一參與該商品促銷活動(dòng)的人數(shù);
(2)該購(gòu)物平臺(tái)調(diào)研部門對(duì)2000位擬參與2019年雙十一該商品促銷活動(dòng)人員的報(bào)價(jià)價(jià)格進(jìn)行了一個(gè)抽樣調(diào)查,得到如下的一份頻數(shù)表:
報(bào)價(jià)區(qū)間(千元) |
| |||||
頻數(shù) | 200 | 600 | 600 | 300 | 200 | 100 |
①求這2000為參與人員報(bào)價(jià)的平均值和樣本方差(同一區(qū)間的報(bào)價(jià)可用該價(jià)格區(qū)間的中點(diǎn)值代替);
②假設(shè)所有參與該商品促銷活動(dòng)人員的報(bào)價(jià)可視為服從正態(tài)分布,且與可分別由①中所求的樣本平均值和樣本方差估值.若預(yù)計(jì)2019年雙十一該商品最終銷售量為317400,請(qǐng)你合理預(yù)測(cè)(需說(shuō)明理由)該商品的最低成交價(jià).
參考公式即數(shù)據(jù)(i)回歸方程:,其中,
(ii)
(iii)若隨機(jī)變量服從正態(tài)分布,則,,
【答案】(1);2百萬(wàn) (2) 3.5;1.7① ②4.8千元
【解析】
(1)分別求得和,求得回歸方程,再取求得預(yù)測(cè)值;
(2)分別利用表中數(shù)據(jù)求得的平均值和樣本方差,再利用正態(tài)分布求得,求得,從而預(yù)測(cè)出最低價(jià).
解:(1)由題意,得,
回歸直線方程為
又當(dāng)時(shí),.
所以預(yù)測(cè)2019年雙十一參與該商品促銷活動(dòng)的人數(shù)為2百萬(wàn).
(2)①由表中的數(shù)據(jù),得
樣本方差
②由①可知,且,
則,
又所以該商品的最低成交價(jià)為4.8千元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線關(guān)于軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)、、均在拋物線上.
(1)寫出該拋物線的方程及其準(zhǔn)線方程;
(2)當(dāng)與的斜率存在且傾斜角互補(bǔ)時(shí),求的值及直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的焦點(diǎn)是橢圓: ()的頂點(diǎn),且橢圓與雙曲線的離心率互為倒數(shù).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)動(dòng)點(diǎn), 在橢圓上,且,記直線在軸上的截距為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的方程為,雙曲線的左、右焦點(diǎn)分別為的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn).
(1)求雙曲線的方程;
(2)若直線與雙曲線恒有兩個(gè)不同的交點(diǎn)A和B,且(其中為原點(diǎn)),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了迎接2019年全國(guó)文明城市評(píng)比,某市文明辦對(duì)市民進(jìn)行了一次文明創(chuàng)建知識(shí)的網(wǎng)絡(luò)問(wèn)卷調(diào)查.每一位市民有且僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參加問(wèn)卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表所示:
組別 | |||||||
頻數(shù) | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數(shù)分布表可以認(rèn)為,此次問(wèn)卷調(diào)查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表),請(qǐng)利用正態(tài)分布的知識(shí)求;
(2)在(1)的條件下,文明辦為此次參加問(wèn)卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:
(i)得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi);
(ii)每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:
獲贈(zèng)的隨機(jī)話費(fèi)(單位:元) | 20 | 40 |
概率 |
現(xiàn)市民小王要參加此次問(wèn)卷調(diào)查,記(單位:元)為該市民參加問(wèn)卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列及數(shù)學(xué)期望.
附:①;
②若,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:的焦點(diǎn)為,準(zhǔn)線為,與軸的交點(diǎn)為,點(diǎn)在拋物線上,過(guò)點(diǎn)作于點(diǎn),如圖1.已知,且四邊形的面積為.
(1)求拋物線的方程;
(2)若正方形的三個(gè)頂點(diǎn),,都在拋物線上(如圖2),求正方形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù),.
(1)當(dāng)時(shí),求的極值;
(2)若存在實(shí)數(shù),使得,且,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為R上的偶函數(shù),當(dāng)時(shí)當(dāng)時(shí),且對(duì)恒成立,函數(shù)的一個(gè)周期內(nèi)的圖像與函數(shù)的圖像恰好有兩個(gè)公共點(diǎn),則 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓方程為,其右焦點(diǎn)與拋物線的焦點(diǎn)重合,過(guò)且垂直于拋物線對(duì)稱軸的直線與橢圓交于、兩點(diǎn),與拋物線交于、兩點(diǎn).
(1)求橢圓的方程;
(2)若直線l與(1)中橢圓相交于,兩點(diǎn), 直線, ,的斜率分別為,, (其中),且,,成等比數(shù)列;設(shè)的面積為, 以、為直徑的圓的面積分別為, , 求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com