已知等差數(shù)列中,首項(xiàng)a1=1,公差d為整數(shù),且滿足數(shù)列滿足項(xiàng)和為

(1)求數(shù)列的通項(xiàng)公式an;

(2)若S2,的等比中項(xiàng),求正整數(shù)m的值.

 

【答案】

(1)an= 2n-1(2)m=12

【解析】

試題分析:(1)由題意,得解得< d <.   

d∈Z,∴d = 2.∴an=1+(n-1)2=2n-1.   

(2)∵

,,S2S1,(m)的等比中項(xiàng),

,即,  解得m=12.

考點(diǎn):數(shù)列的應(yīng)用;數(shù)列遞推式.

點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

20、已知等差數(shù)列{an}的首項(xiàng)為a,公差為b,等比數(shù)列{bn}的首項(xiàng)為b,公比為a,其中a,b都是大于1
的正整數(shù),且a1<b1,b2<a3
(1)求a的值;
(2)若對(duì)于任意的n∈N+,總存在m∈N+,使得am+3=bn成立,求b的值;
(3)令Cn=an+1+bn,問(wèn)數(shù)列{Cn}中是否存在連續(xù)三項(xiàng)成等比數(shù)列?若存在,求出所有成等比數(shù)列的連續(xù)三項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•靜安區(qū)一模)已知等差數(shù)列{an}的首項(xiàng)為p,公差為d(d>0).對(duì)于不同的自然數(shù)n,直線x=an與x軸和指數(shù)函數(shù)f(x)=(
12
)x
的圖象分別交于點(diǎn)An與Bn(如圖所示),記Bn的坐標(biāo)為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
(1)求證數(shù)列{sn}是公比絕對(duì)值小于1的等比數(shù)列;
(2)設(shè){an}的公差d=1,是否存在這樣的正整數(shù)n,構(gòu)成以bn,bn+1,bn+2為邊長(zhǎng)的三角形?并請(qǐng)說(shuō)明理由;
(3)(理)設(shè){an}的公差d(d>0)為已知常數(shù),是否存在這樣的實(shí)數(shù)p使得(1)中無(wú)窮等比數(shù)列{sn}各項(xiàng)的和S>2010?并請(qǐng)說(shuō)明理由.
(4)(文)設(shè){an}的公差d=1,是否存在這樣的實(shí)數(shù)p使得(1)中無(wú)窮等比數(shù)列{sn}各項(xiàng)的和S>2010?如果存在,給出一個(gè)符合條件的p值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省高二上學(xué)期期末考試數(shù)學(xué)試卷 題型:選擇題

已知等差數(shù)列中,首項(xiàng).公差.則通過(guò)公式等于(  )

A.        B.          C.            D.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省靖安中學(xué)高二上學(xué)期期末考試數(shù)學(xué)試卷 題型:單選題

已知等差數(shù)列中,首項(xiàng).公差.則通過(guò)公式等于( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案