若a,b,c,d∈R,則下列命題中一定成立的是(  )
A、若a>b,c>d則a>c
B、若a>b,則ac>bc
C、若a>-b,則c-a<c+b
D、若a2>b2,則a>b
考點(diǎn):不等式比較大小
專題:不等式的解法及應(yīng)用
分析:A.取a=2,b=1,c=4,d=1,即可判斷出;
B.當(dāng)c≤0時(shí),ac>bc不成立;
C.利用不等式的基本性質(zhì)即可判斷出;
D.由a2>b2,可得|a|>|b|.
解答: 解:A.若a>b,c>d,則a>c不成立,例如取a=2,b=1,c=4,d=1;
B.a(chǎn)>b,c≤0時(shí),ac>bc不成立;
C.∵a>-b,∴-a<b,∴c-a<c+b,成立.
D.∵a2>b2,∴|a|>|b|,因此D不成立.
綜上可知:只有C成立.
故選:C.
點(diǎn)評(píng):本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果數(shù)列{an}滿足a1=-60,an+1=an+3,那么S10=(  )
A、-180B、-465
C、-600D、735

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程mx2+(2m+1)x+m=0有兩個(gè)不等的實(shí)根,則實(shí)數(shù)m的取值范圍為( 。
A、(-
1
4
,0)∪(0,+∞)
B、(-∞,-
1
4
C、[
1
4
,+∞)
D、(-
1
4
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于命題“正三角形內(nèi)任意一點(diǎn)到各邊的距離之和為定值”推廣到空間是“正四面體內(nèi)任意一點(diǎn)到各面的距離之和為( 。
A、定值
B、有時(shí)為定值,有時(shí)為變數(shù)
C、變數(shù)
D、與正四面體無關(guān)的常數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>b,M=a2-ab,N=ab-b2,則(  )
A、M>NB、M≥N
C、M<ND、M≤N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=2-
4
5
i(i是虛數(shù)單位)的虛部是( 。
A、
4
5
i
B、-
4
5
i
C、
4
5
D、-
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若G為三角形ABC的重心,若∠A=60°,
AB
AC
=2,則|
AG
|的最小值是(  )
A、
3
3
B、
2
2
C、
2
3
D、
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于向量
PAi
(i=1,2,…n),把能夠使得|
PA1
|+|
PA2
|+…+|
PAn
|取到最小值的點(diǎn)P稱為Ai(i=1,2,…n)的“平衡點(diǎn)”.如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,延長BC至E,使得BC=CE,聯(lián)結(jié)AE,分別交BD、CD于F、G兩點(diǎn).下列結(jié)論中,正確的是( 。
A、A、C的“平衡點(diǎn)”必為O
B、D、C、E的“平衡點(diǎn)”為D、E的中點(diǎn)
C、A、F、G、E的“平衡點(diǎn)”存在且唯一
D、A、B、E、D的“平衡點(diǎn)”必為F

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓A:(x+3)2+y2=100,圓A內(nèi)一定點(diǎn)B(3,0),動(dòng)圓P過B點(diǎn)且與圓A內(nèi)切,求圓心P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案