【題目】設(shè) .有序數(shù)組 經(jīng)m次變換后得到數(shù)組 ,其中 , ( 1,2, ,n), , .
例如:有序數(shù)組 經(jīng)1次變換后得到數(shù)組 ,即 ;經(jīng)第2次變換后得到數(shù)組 .
(1)若 ,求 的值;
(2)求證: ,其中 1,2, ,n.(注:當(dāng) 時(shí), , 1,2, ,n,則 .)
【答案】
(1)
解:依題意,
經(jīng)1次變換為: ,
經(jīng)2次變換為: ,
經(jīng)3次變換為: ,
所以 .
(2)
下面用數(shù)學(xué)歸納法證明對(duì) , ,其中 .
(i)當(dāng) 時(shí), ,其中 ,結(jié)論成立;
(ii)假設(shè) 時(shí), ,其中 .
則 時(shí),
,
所以結(jié)論對(duì) 時(shí)也成立.
由(i)(ii)知, , ,其中 .
【解析】(1.)將i=1.2.3..依次代入 ,當(dāng)i=3時(shí)可得到 .
(2.)用數(shù)學(xué)歸納法證明,變換規(guī)律為:前一次的第二個(gè)值通過(guò)變換法則b變換后成為下一次變換的第一個(gè)值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1=4,an+1=qan+d(q,d為常數(shù)).
(1)當(dāng)q=1,d=2時(shí),求a2017的值;
(2)當(dāng)q=3,d=﹣2時(shí),記 ,Sn=b1+b2+b3+…+bn , 證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某校高三年級(jí)隨機(jī)抽取一個(gè)班,對(duì)該班50名學(xué)生的高校招生體檢表中的視力情況進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.若某高校A專(zhuān)業(yè)對(duì)視力的要求在0.9以上,則該班學(xué)生中能報(bào)A專(zhuān)業(yè)的人數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= .
(1)討論f(x)的單調(diào)性;
(2)設(shè)a>0,證明:當(dāng)0<x<a時(shí),f(x+a)<f(a﹣x);
(3)設(shè)x1 , x2是f(x)的兩個(gè)零點(diǎn),證明:f′( )>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一緝私艇巡航至距領(lǐng)海邊界線l(一條南北方向的直線)3.8海里的A處,發(fā)現(xiàn)在其北偏東30°方向相距4海里的B處有一走私船正欲逃跑,緝私艇立即追擊.已知緝私艇的最大航速是走私船最大航速的3倍.假設(shè)緝私艇和走私船均按直線方向以最大航速航行.(參考數(shù)據(jù): ° , )
(1)若走私船沿正東方向逃離,試確定緝私艇的追擊方向,使得用最短時(shí)間在領(lǐng)海內(nèi)攔截成功;
(2)問(wèn):無(wú)論走私船沿何方向逃跑,緝私艇是否總能在領(lǐng)海內(nèi)成功攔截?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(3,﹣1),| |= , =﹣5, =x +(1﹣x) .
(Ⅰ)若 ,求實(shí)數(shù)x的值;
(Ⅱ)當(dāng)| |取最小值時(shí),求 與 的夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}是等比數(shù)列,且a2013+a2015= dx,則a2014(a2012+2a2014+a2016)的值為( )
A.π2
B.2π
C.π
D.4π2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,銳角三角形ABC的內(nèi)心為I,過(guò)點(diǎn)A作直線BI的垂線,垂足為H,點(diǎn)E為圓I與邊CA的切點(diǎn).
(1)求證A,I,H,E四點(diǎn)共圓;
(2)若∠C=50°,求∠IEH的度數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2ln(x+1)+ ﹣(m+1)x有且只有一個(gè)極值. (Ⅰ)求實(shí)數(shù)m的取值范圍;
(Ⅱ)若f(x1)=f(x2)(x1≠x2),求證:x1+x2>2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com