(本小題滿分13分)已知橢圓的中心在原點,焦點在y軸上,離心率為,且

 

橢圓經(jīng)過圓的圓心C。

(I)求橢圓的標準方程;

(II)設(shè)直線與橢圓交于A、B兩點,點且|PA|=|PB|,求直線的方程。

 

 

【答案】

(1)由圓C的方程可知:圓心C(1,-2)                  ————2分

設(shè)橢圓的方程為                      

 

橢圓過圓心C,可得:

 

,且。

 

解得:

即橢圓的方程為:                               ————6分

 

(2)將直線方程與橢圓方程聯(lián)立方程組消元可得:

                                  

設(shè)

法一:設(shè)AB中點M

其中                     ————8分

 

,則有:,解得:                   ————10分

 

,顯然滿足題意。

故直線的方程為: 或  或            ————13分

法二:由,代入可得方程:可解出

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調(diào)理科數(shù)學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項.

(1) 求函數(shù)的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項和

 

 

查看答案和解析>>

同步練習冊答案