(1)集合A∪{1,2,3}={1,2,3}寫出所有可能的集合A
(2)集合M={-1,2},N={x|x2-ax+4=0},若N⊆M,求a.
考點:并集及其運算,集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:(1)根據(jù)集合間的運算列舉所以可能的集合;
(2)有集合M={-1,2},N⊆M得出集合集合N的所以可能情況,繼而求解.
解答: (1)A所有可能:∅,{1},{2},{3},{1,2},{2,3},{1,3},{1,2,3}…(5分)
(2)N=∅時,N⊆M,此時△=a2-16<0,得&:-4<a<4…(2分)
當(dāng) -1∈N時,得:a=-5,此時N={-1,-4},不合題意,舍去…(3分)
當(dāng) 2∈N時,得:a=4,此時N={2},合題意…(4分)
綜述:-4<a≤4…(5分)
點評:本題主要考查集合間的運算,做題時要考慮全面,不能有漏解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知sinα-cosα=
1
3
,求sin2α的值;
(2)求
tan20°+tan40°-tan60°
tan20°tan40°
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某觀測站C在城A的南偏西20°方向上,從城A出發(fā)有一條公路,走向是南偏東40°.在C處測得距離C為31千米的公路上的B處有一輛車正沿著公路向城A駛?cè)ィ撥囆旭偭?0千米后到達(dá)D處停下,此時測得C、D兩處距離為21千米.
(1)求cos∠CDB的值;
(2)此車在D處停下時距城A多少千米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出下列函數(shù)的圖象:
①y=|x2-5x-6|;
②y=x2-5|x|-6;
③y=2x-
4
x
+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)的定義域為R,對任意實數(shù)a,b滿足f(a+b)=f(a)•f(b).
(1)設(shè)f(1)=k(k≠0),試求f(10); 
(2)設(shè)當(dāng)x<0時,f(x)>1,試解不等式f(x+5)>
1
f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)計算lg8+3lg5-(
1
9
-1+(
27
8
 
1
3
的值;
(2)計算sin
25π
6
+tan
4
-cos
19π
3
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<
π
2
).
(1)若x∈[2,6]時,f(x)max=f(2)=2,f(x)min=f(6)=-2且f(x)在[2,6]上單調(diào)減,求ω,φ的值;
(2)若φ=0,f(x)=0在[-π,π]上恰有19個根,求ω的取值范圍;
(3)若φ=0,f(x)在[
π
6
,
π
4
]上單調(diào)遞增,求ω的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
2
x+1
,x∈[-3,-2].
(1)求證:f(x)在[-3,-2]上是增函數(shù);
(2)求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

扇形圓心角為2弧度,弧長為8cm,則扇形半徑為
 
cm.

查看答案和解析>>

同步練習(xí)冊答案