精英家教網 > 高中數學 > 題目詳情
20.復數z=$\frac{1+2i}{1+i}$(i為虛數單位)在復平面內對應點的坐標是( 。
A.($\frac{3}{2}$,$\frac{1}{2}$)B.($\frac{1}{2}$,$\frac{3}{2}$)C.($\frac{3}{2}$,-$\frac{1}{2}$)D.(-$\frac{3}{2}$,$\frac{1}{2}$)

分析 直接由復數代數形式的乘除運算化簡復數z,求出復數z在復平面內對應點的坐標得答案.

解答 解:z=$\frac{1+2i}{1+i}$=$\frac{(1+2i)(1-i)}{(1+i)(1-i)}=\frac{3+i}{2}=\frac{3}{2}+\frac{1}{2}i$,
則復數z在復平面內對應點的坐標是:($\frac{3}{2}$,$\frac{1}{2}$).
故選:A.

點評 本題考查了復數代數形式的乘除運算,考查了復數的代數表示法及其幾何意義,是基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

10.某樹苗培育基地為了解其基地內榕樹樹苗的長勢情況,隨機抽取了100株樹苗,分別測出它們的高度(單位:cm),并將所得數據分組,畫出頻率分布表如表:
組 距頻 數頻 率
[100,102)160.16
[102,104)180.18
[104,106)250.25
[106,108)ab
[108,110)60.06
[110,112)30.03
合計1001
(1)求如表中a、b的值;
(2)估計該基地榕樹樹苗平均高度;
(3)若將這100株榕樹苗高度分布的頻率視為概率,從培育基地的榕樹苗中隨機選出4株,其中在[104,106)內的有X株,求X的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.設全集∪={a,b,c,d},集合M={ a,c,d },N={b,d},則(∁UM)∩N等于(  )
A.B.4w9kytiC.{a,c}D.{b,d}

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知p:方程x2+mx+1=0有兩個不等的正實根;q:方程4x2+4(m-2)x+1=0無實數根.若p∨q為真,p∧q為假,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.函數y=log${\;}_{\frac{1}{2}}$x10,x∈(0,8]的值域是[-30,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知焦點在x軸的橢圓的離心率與雙曲線3x2-y2=3的離心率互為倒數,且過點(1,$\frac{3}{2}$).
(1)求橢圓方程;
(2)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點M,N,點P($\frac{1}{5}$,0),有|MP|=|NP|,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.全集U={2,3,4,5,6},集合A={2,5,6},B={3,5},則(∁UA)∩B={3}.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.已知數列{an}滿足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}<\frac{1}{2})}\\{2{a}_{n}-1(\frac{1}{2}≤{a}_{n}<1)}\end{array}\right.$,若a1=$\frac{6}{7}$,則a2014的值為(  )
A.$\frac{5}{7}$B.$\frac{6}{7}$C.$\frac{3}{7}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.已知銳角△ABC中的三個內角分別為A,B,C.
(1)設$\overrightarrow{BC}•\overrightarrow{CA}=\overrightarrow{CA}•\overrightarrow{AB}$,判斷△ABC的形狀;
(2)設向量$\overrightarrow s=(2sinC,-\sqrt{3})$,$\overrightarrow t=(cos2C,2{cos^2}\frac{C}{2}-1)$,且$\overrightarrow s∥\overrightarrow t$,若$sinA=\frac{1}{3}$,求$sin(\frac{π}{3}-B)$的值.

查看答案和解析>>

同步練習冊答案