科目:高中數(shù)學(xué) 來源: 題型:
an+2 |
an+1 |
an+1 |
an |
3 |
2 |
3nan-1 |
2an-1+n-1 |
n•3n |
3n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河北省保定市2009屆高三上學(xué)期調(diào)研考試數(shù)學(xué)試題(Word版) 題型:013
(文)在數(shù)列1,3,2,……中,前兩項以后的每一項等于它前面兩項之差(前面一項減去再前面一項).則該數(shù)列的前100項之和是
A.5
B.20
C.300
D.652
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年萊陽一中學(xué)段檢測文)(12分)
已知在數(shù)列{an}中,已知,且.
(1)求a2 ,a3
(2)求數(shù)列{an}的通項公式;
(3)設(shè),求和:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市徐匯區(qū)高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(文)對于數(shù)列,從中選取若干項,不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個概念之后,打算研究首項為,公差為的無窮等差數(shù)列的子數(shù)列問題,為此,他取了其中第一項,第三項和第五項.
(1) 若成等比數(shù)列,求的值;
(2) 在, 的無窮等差數(shù)列中,是否存在無窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請給出數(shù)列的通項公式并證明;若不存在,說明理由;
(3) 他在研究過程中猜想了一個命題:“對于首項為正整數(shù),公比為正整數(shù)()的無窮等比數(shù) 列,總可以找到一個子數(shù)列,使得構(gòu)成等差數(shù)列”. 于是,他在數(shù)列中任取三項,由與的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com