分析 由題意可得${∫}_{-1}^{2}$g(x)dx=${∫}_{-1}^{1}\sqrt{1-{x}^{2}}dx$+${∫}_{1}^{2}{e}^{x}dx$,由定積分的幾何意義和定積分的計算可得.
解答 解:∵g(x)=$\left\{\begin{array}{l}{{e}^{x},x>1}\\{\sqrt{{1-x}^{2}},-1≤x≤1}\end{array}\right.$,
∴${∫}_{-1}^{2}$g(x)dx=${∫}_{-1}^{1}\sqrt{1-{x}^{2}}dx$+${∫}_{1}^{2}{e}^{x}dx$,
由定積分的幾何意義可知=${∫}_{-1}^{1}\sqrt{1-{x}^{2}}dx$表示上半圓x2+y2=1(y≥0)的面積,
∴${∫}_{-1}^{1}\sqrt{1-{x}^{2}}dx$=$\frac{π}{2}$,又${∫}_{1}^{2}{e}^{x}dx$=ex|${|}_{1}^{2}$=e2-e,
∴${∫}_{-1}^{1}\sqrt{1-{x}^{2}}dx$+${∫}_{1}^{2}{e}^{x}dx$=$\frac{π}{2}$+e2-e,
故答案為:$\frac{π}{2}$+e2-e.
點評 本題考查定積分的計算,涉及定積分的意義,屬基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=lg(1+x)+lgx,y=lg(x+x2) | B. | y=|x|,y=$\sqrt{{x}^{2}}$ | ||
C. | y=1,y=x0 | D. | y=a${\;}^{lo{g}_{a}x}$,y=logaax |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$a2 | B. | $\sqrt{2}$a2 | C. | $\frac{3\sqrt{3}}{4}$a2 | D. | 2a2 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com