已知雙曲線的兩個焦點F1(-
10
,0),F(xiàn)2
10
,0),P是此雙曲線上的一點,且
PF1
PF2
=0,|
PF1
|•|
PF2
|=2,則該雙曲線的方程是
x2
9
-y2=1
x2
9
-y2=1
分析:利用勾股定理,結(jié)合雙曲線的定義,即可求出雙曲線的方程.
解答:解:由于三角形PF1F2為直角三角形,故PF
 
2
1
+PF
 
2
2
=4c2=40
所以(PF1-PF22+2PF1•PF2=40,
由雙曲線定義得(2a)2+4=40,即a2=9,故b2=1,
所以雙曲線方程為
x2
9
-y2=1.
故答案為:
x2
9
-y2=1.
點評:本題考查雙曲線的標(biāo)準方程,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩個焦點為F1(-
5
,0)、F2
5
,0),P是此雙曲線上的一點,且PF1⊥PF2,|PF1|•|PF2|=2,則該雙曲線的方程是( 。
A、
x2
2
-
y2
3
=1
B、
x2
3
-
y2
2
=1
C、
x2
4
-y2=1
D、x2-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩個焦點是橢圓
x2
100
+
y2
64
=1
的兩個頂點,雙曲線的兩條準線經(jīng)過橢圓的兩個焦點,則此雙曲線的方程是(  )
A、
x2
60
-
y2
30
=1
B、
x2
50
-
y2
40
=1
C、
x2
60
-
y2
40
=1
D、
x2
50
-
y2
30
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩個焦點為橢圓
x2
16
+
y2
7
=1
的長軸的端點,其準線過橢圓的焦點,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩個焦點為F1(-
5
,0)
,F2(
5
,0)
,P是此雙曲線上的一點,且PF1⊥PF2,|PF1|•|PF2|=2,求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩個焦點F1(-
10
,0),F(xiàn)2
10
,0),M是此雙曲線上的一點,|
MF1
|-|
MF2
|=6,則雙曲線的方程為
x2
9
-y2=1
x2
9
-y2=1

查看答案和解析>>

同步練習(xí)冊答案