精英家教網 > 高中數學 > 題目詳情
如果雙曲線過點P(6,) ,漸近線方程為,則此雙曲線的方程為  _.
.

試題分析:因為雙曲線的漸近線方程為,設此雙曲線方程為,
因為此雙曲線過點P(6,),所以所求雙曲線的方程為.
點評:因為雙曲線的漸近線方程為,可設漸近線為的雙曲線系方程為,然后再把點P(6,)代入求得,從而得到所求雙曲線的方程.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

若直線與曲線有兩個不同的交點,則實數的取值范圍是( )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知拋物線,焦點為,頂點為,點在拋物線上移動,的中點,的中點,求點的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,設是圓上的動點,點D是軸上的投影,M為D上一點,且
(Ⅰ)當的在圓上運動時,求點M的軌跡C的方程;
(Ⅱ)求過點(3,0)且斜率為的直線被C所截線段的長度。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖所示,F1和F2分別是雙曲線的兩個焦點,A和B是以O為圓心,|OF1|為半徑的圓與該雙曲線左支的兩個交點,且△F2AB是等邊三角形,則離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,正方體的棱長為,點在棱上, 且, 點是平面上的動點,且動點到直線 的距離與點到點的距離的平方差為,則動點的軌跡是(     )
A.圓B.雙曲線C.拋物線D.直線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知以雙曲線C的兩個焦點及虛軸的兩個端點為原點的四邊形中,有一個內角為,則雙曲線C的離心率為       

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(12分)拋物線的頂點在坐標原點,焦點在軸的負半軸上,過點作直線與拋物線交于A,B兩點,且滿足,
(1)求拋物線的方程
(2)當拋物線上的一動點P從A運動到B時,求面積的的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

以橢圓的焦點為頂點、頂點為焦點的的雙曲線方程是
A.B.
C.D.

查看答案和解析>>

同步練習冊答案