(本小題滿分13分)

已知三次函數(shù)的導函數(shù),,為實數(shù)。

(1)若曲線在點()處切線的斜率為12,求的值;

(2)若在區(qū)間上的最小值、最大值分別為和1,且,求函數(shù)的解析式。

 

【答案】

(Ⅰ)  ;(Ⅱ) = 。

【解析】本試題主要是考查了導數(shù)在研究函數(shù)中的運用。求解曲線的切線方程和函數(shù)的極值以及函數(shù)的最值的綜合運用。

(1)利用導數(shù)的幾何意義表述出切線的斜率,就是導數(shù)值,然后得到結(jié)論。

(2)利用已知關(guān)系式求解導數(shù)得到導數(shù)為正或者為負時的解集,得到單調(diào)區(qū)間,進而分析最值問題的運算。

解析:(Ⅰ)由導數(shù)的幾何意義=12  ……………1分

      ∴   ∴  …………………4分

(Ⅱ)∵ , 

                ……6分

 得,

[-1,1],

∴ 當[-1,0)時,,遞增;

(0,1]時,遞減!9分

在區(qū)間[-1,1]上的最大值為

,∴ =1 ……………………11分

 ∴ 是函數(shù)的最小值,

  ∴

=  ………………13分

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調(diào)理科數(shù)學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項.

(1) 求函數(shù)的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項和

 

 

查看答案和解析>>

同步練習冊答案