一個(gè)圓的圓心在橢圓的右焦點(diǎn)F2(c,0),且過橢圓中心O(0,0)又與橢圓交于點(diǎn)P,設(shè)F1是橢圓的左 焦點(diǎn),直線F1P恰與圓切于P點(diǎn),則橢圓的離心率等于
[     ]
A.
B.
C.
D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)圓的圓心在橢圓的右焦點(diǎn)F2(c,0),且過橢圓中心O(0,0),又與橢圓交于點(diǎn)P,設(shè)F1是橢圓的左焦點(diǎn),直線F1P恰與圓切于P點(diǎn),則橢圓的離心率等于( 。
A、
3
-1
B、2-
3
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在坐標(biāo)原點(diǎn)O,半徑為
a2+b2
的圓是橢圓m的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為F2(
2
,0)
,其短軸上的一個(gè)端點(diǎn)到F2距離為
3

(Ⅰ)求橢圓C及其“伴隨圓”的方程;
(Ⅱ)若過點(diǎn)P(0,m)(m<0)的直線l與橢圓C只有一個(gè)公共點(diǎn),且l截橢圓C的“伴隨圓”所得的弦長(zhǎng)為2
2
,求m的值;
(Ⅲ)過橢圓C“伴橢圓”上一動(dòng)點(diǎn)Q作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)公共點(diǎn),試判斷直線l1,l2的斜率之積是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

與圓C1:x2+(y+1)2=1及圓C2:x2+(y-4)2=4都外切的動(dòng)圓的圓心在(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市學(xué)軍中學(xué)高二(上)期末數(shù)學(xué)試卷(文科) (解析版) 題型:選擇題

一個(gè)圓的圓心在橢圓的右焦點(diǎn)F2(c,0),且過橢圓中心O(0,0),又與橢圓交于點(diǎn)P,設(shè)F1是橢圓的左
焦點(diǎn),直線F1P恰與圓切于P點(diǎn),則橢圓的離心率等于( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案