過點(diǎn)P(2,
π
4
)并且與極軸垂直的直線方程是
 
考點(diǎn):簡單曲線的極坐標(biāo)方程
專題:選作題,坐標(biāo)系和參數(shù)方程
分析:在直角坐標(biāo)系中,求出直線的方程,利用極坐標(biāo)與直角坐標(biāo)的互化公式求得直線極坐標(biāo)方程.
解答: 解:在直角坐標(biāo)系中,點(diǎn)P(2,
π
4
)的直角坐標(biāo)為(
2
,
2

在直角坐標(biāo)系中,過點(diǎn)(
2
,
2
)并且與x垂直的直線方程是x=
2
,
其極坐標(biāo)方程為ρcosθ=
2

故答案為:ρcosθ=
2
點(diǎn)評:本題考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,求出直角坐標(biāo)系中直線的方程是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,且經(jīng)過點(diǎn)(1,
2
2
).
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A,B為橢圓上兩點(diǎn),直線AB與坐標(biāo)軸不垂直.設(shè)T(x0,0),若|AT|=|BT|,且|AB|=2,求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,
2
x
+
1
y
=2,則x+2y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{n-
1
n
}的第三項(xiàng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,內(nèi)角A,B,C的對邊a,b,c滿足:ab=2且C=60°,則(a+b)2-c2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

公比為2的等比數(shù)列{an}的前n項(xiàng)和為Sn,則
S4
S2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F,若以F為圓心,a為半徑的圓與直線x=
a2
c
有交點(diǎn),則此橢圓的離心率的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若偶函數(shù)f(x)在區(qū)間(-∞,-1]上是增函數(shù),比較f(-
3
2
),f(-1),f(2)的大小關(guān)系
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若與球心距離為4的平面截球體所得的圓面半徑為3,則球體積為
 

查看答案和解析>>

同步練習(xí)冊答案