13.設(shè)數(shù)列{an}是等差數(shù)列,且a2=-2,a8=6,數(shù)列{an}的前n項(xiàng)和為Sn,則S9=( 。
A.27B.18C.20D.9

分析 由等差數(shù)列的性質(zhì)可得:a2+a8=a1+a9,再利用求和公式即可得出.

解答 解:由等差數(shù)列的性質(zhì)可得:a2+a8=a1+a9,
∴S9=$\frac{9({a}_{1}+{a}_{9})}{2}$=9×$\frac{-2+6}{2}$=18.
故選:B.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知拋物線C:y2=4x的交點(diǎn)為F,直線y=x-1與C相交于A,B兩點(diǎn),與雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=2(a>0,b>0)的漸近線相交于M,N兩點(diǎn),若線段AB與MN的中點(diǎn)相同,則雙曲線E離心率為( 。
A.$\frac{\sqrt{6}}{3}$B.2C.$\frac{\sqrt{15}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{xn}按如下方式構(gòu)成:xn∈(0,1)(n∈N*),函數(shù)f(x)=ln($\frac{1+x}{1-x}$)在點(diǎn)(xn,f(xn))處的切線與x軸交點(diǎn)的橫坐標(biāo)為xn+1
(Ⅰ)證明:當(dāng)x∈(0,1)時(shí),f(x)>2x
(Ⅱ)證明:xn+1<xn3
(Ⅲ)若x1∈(0,a),a∈(0,1),求證:對(duì)任意的正整數(shù)m,都有l(wèi)og${\;}_{{x}_{n}}$a+log${\;}_{{x}_{n+1}}$a+…+log${\;}_{{x}_{n+m}}$a<$\frac{1}{2}$•($\frac{1}{3}$)n-2(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,已知a2-c2=2b,且sinA•cosC=3cosA•sinC,則b的值為(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知$\frac{{2{S_n}}}{3}-{3^{n-1}}$=1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足${b_n}=\frac{{{{log}_3}{a_n}}}{a_n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若對(duì)于任意的x∈[a,2a],都有y∈[a,a2]滿足logax+logay=3,則實(shí)數(shù)a的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.復(fù)數(shù)z=$\frac{2-i}{i}$(i為虛數(shù)單位)的共軛復(fù)數(shù)是( 。
A.1-2iB.1+2iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.一元二次不等式x2-3x+ab<0(a>b)的解集為{x|1<x<c},則$\frac{{a}^{2}+^{2}}{a-b}$的最小值為( 。
A.$\sqrt{2}$B.4C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.給定下列命題,其中真命題的個(gè)數(shù)為:( 。
①已知a,b,m∈R,若am2<bm2,則a<b;
②“矩形的對(duì)角線相等”的逆命題;
③“若xy=0,則x、y中至少有一個(gè)為0”的否命題;
④如果將一組數(shù)據(jù)中的每一個(gè)數(shù)都加上同一個(gè)非零常數(shù),那么這組數(shù)據(jù)的平均數(shù)和方差都改變.
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案