【題目】已知函數(shù) .
(1)討論函數(shù)在定義域內的極值點的個數(shù);
(2)若函數(shù)在處取得極值,且對任意, 恒成立,求實數(shù)的取值范圍;
(3)當時,求證: .
【答案】(1)答案見解析;(2) ;(3)證明見解析.
【解析】試題分析:
(1)由題意可得,分類討論有:當時,函數(shù)沒有極值點,
當時,函數(shù)有一個極值點.
(2)由題意可得,原問題等價于恒成立,討論函數(shù)的性質可得實數(shù)的取值范圍是;
(3)原問題等價于,繼而證明函數(shù)在區(qū)間內單調遞增即可.
試題解析:
(1),
當時, 在上恒成立,
函數(shù)在單調遞減,∴在上沒有極值點;
當時, 得, 得,
∴在上遞減,在上遞增,即在處有極小值.
∴當時在上沒有極值點,
當時,在上有一個極值點.
(2)∵函數(shù)在處取得極值,∴,
∴,
令, ,
可得在上遞減,在上遞增,
∴,即.
(3)證明:,
令,則只要證明在上單調遞增,
又∵,
顯然函數(shù)在上單調遞增.
∴,即,
∴在上單調遞增,即,
∴當時,有.
科目:高中數(shù)學 來源: 題型:
【題目】過拋物線L:x2=2py(p>0)的焦點F且斜率為 的直線與拋物線L在第一象限的交點為P,且|PF|=5.
(1)求拋物線L的方程;
(2)與圓x2+(y+1)2=1相切的直線l:y=kx+t交拋物線L于不同的兩點M、N,若拋物線上一點C滿足 =λ( + )(λ>0),求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn , 且an﹣a1=2 (n≥2),若bn= + ,則bn= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在點M(1,f(1))處的切線方程為
求(1)實數(shù)a,b的值;
(2)函數(shù)的單調區(qū)間及在區(qū)間[0,3]上的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求的值;
(2)若函數(shù)在區(qū)間是單調遞增函數(shù),求實數(shù)的取值范圍;
(3)若關于的方程在區(qū)間內有兩個實數(shù)根,記,求實數(shù)的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】心理學家通過研究學生的學習行為發(fā)現(xiàn);學生的接受能力與老師引入概念和描述問題所用的時間相關,教學開始時,學生的興趣激增,學生的興趣保持一段較理想的狀態(tài),隨后學生的注意力開始分散,分析結果和實驗表明,用表示學生掌握和接受概念的能力, x表示講授概念的時間(單位:min),可有以下的關系:
(1)開講后第5min與開講后第20min比較,學生的接受能力何時更強一些?
(2)開講后多少min學生的接受能力最強?能維持多少時間?
(3)若一個新數(shù)學概念需要55以上(包括55)的接受能力以及13min時間,那么老師能否在學生一直達到所需接受能力的狀態(tài)下講授完這個概念?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知, .
(1)若函數(shù)的單調遞減區(qū)間為,求函數(shù)的圖象在點處的切線方程;
(2)若不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,⊙O1與⊙O2外切于點P,從⊙O1上點A作的切線AB,切點為B,連AP(不過O1)并延長與⊙O2交于點C.
(1)求證:AO1∥CO2;
(2)若 ,求⊙O1的半徑與⊙O2的半徑之比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com