【題目】將一顆骰子(各面分別標(biāo)有1,2,3,4,5,6的均勻正方體)拋擲三次.那么,向上一面的三個(gè)點(diǎn)數(shù)可構(gòu)成周長(zhǎng)能被3整除的三角形的三邊長(zhǎng)的概率_______.

【答案】

【解析】

設(shè)投擲這三顆骰子所得點(diǎn)數(shù)分別為、b、c (≤b≤c).

則條件等價(jià)于

若所構(gòu)成的三角形是正三角形,則共有6種情形.

若所構(gòu)成的三角形是等腰三角形(非等邊),則易證(mod 3).

從而(,b,c)=(1,4,4),(2,5,5),(3,6,6) 此時(shí),共有9種情形.

若所構(gòu)成的三角形是任意三角形(非等腰),則<b<c.從而,>≥1.進(jìn)而,

4≤c≤6.故(,b,c)=(2,3,4),(3,4,5),(4,5,6)

此時(shí),共有種情形.

因此,所求的概率等于

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2021年開(kāi)始,我省將試行“3+1+2“的普通高考新模式,即除語(yǔ)文、數(shù)學(xué)、外語(yǔ)3門(mén)必選科目外,考生再?gòu)奈锢怼v史中選1門(mén),從化學(xué)、生物、地理、政治中選2門(mén)作為選考科目.為了幫助學(xué)生合理選科,某中學(xué)將高一每個(gè)學(xué)生的六門(mén)科目綜合成績(jī)按比例均縮放成5分制,繪制成雷達(dá)圖.甲同學(xué)的成績(jī)雷達(dá)圖如圖所示,下面敘述一定不正確的是( 。

A.甲的物理成績(jī)領(lǐng)先年級(jí)平均分最多

B.甲有2個(gè)科目的成績(jī)低于年級(jí)平均分

C.甲的成績(jī)從高到低的前3個(gè)科目依次是地理、化學(xué)、歷史

D.對(duì)甲而言,物理、化學(xué)、地理是比較理想的一種選科結(jié)果

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,矩形中,,邊上異于端點(diǎn)的動(dòng)點(diǎn),,將矩形沿折疊至處,使面(如圖2).點(diǎn)滿足,.

(1)證明:;

(2)設(shè),當(dāng)為何值時(shí),四面體的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩隊(duì)進(jìn)行籃球決賽,采取五場(chǎng)三勝制(當(dāng)一隊(duì)贏得三場(chǎng)勝利時(shí),該隊(duì)獲勝,比賽結(jié)束).根據(jù)前期比賽成績(jī),甲隊(duì)的主客場(chǎng)安排依次為“主主客客主”.設(shè)甲隊(duì)主場(chǎng)取勝的概率為,客場(chǎng)取勝的概率為,且各場(chǎng)比賽結(jié)果相互獨(dú)立,則甲隊(duì)不超過(guò)場(chǎng)即獲勝的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】水稻是人類(lèi)重要的糧食作物之一,耕種與食用的歷史都相當(dāng)悠久,日前我國(guó)南方農(nóng)戶在播種水稻時(shí)一般有直播、撒酒兩種方式.為比較在兩種不同的播種方式下水稻產(chǎn)量的區(qū)別,某市紅旗農(nóng)場(chǎng)于2019年選取了200塊農(nóng)田,分成兩組,每組100塊,進(jìn)行試驗(yàn).其中第一組采用直播的方式進(jìn)行播種,第二組采用撒播的方式進(jìn)行播種.得到數(shù)據(jù)如下表:

產(chǎn)量(單位:斤)

播種方式

[840,860

[860,880

[880,900

[900,920

[920,940

直播

4

8

18

39

31

散播

9

19

22

32

18

約定畝產(chǎn)超過(guò)900斤(含900斤)為產(chǎn)量高,否則為產(chǎn)量低

1)請(qǐng)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)估計(jì)100塊直播農(nóng)田的平均產(chǎn)量(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表)

2)請(qǐng)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為產(chǎn)量高播種方式有關(guān)?

產(chǎn)量高

產(chǎn)量低

合計(jì)

直播

散播

合計(jì)

PK2k0

0.10

0.010

0.001

k0

2.706

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】n×n的棋盤(pán)的部分結(jié)點(diǎn)(單位正方形的頂點(diǎn))染紅,使得任意一個(gè)由單位正方形構(gòu)成的k×k的子棋盤(pán)的邊界上至少有一個(gè)紅點(diǎn).記滿足條件的紅點(diǎn)數(shù)的最小值為. 試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公交公司為了方便市民出行、科學(xué)規(guī)劃車(chē)輛投放,在一個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為研究車(chē)輛發(fā)車(chē)間隔時(shí)間(分鐘)與乘客等候人數(shù)(人)之間的關(guān)系,經(jīng)過(guò)調(diào)查得到如下數(shù)據(jù):

間隔時(shí)間(分鐘)

等候人數(shù)(人)

調(diào)查小組先從這組數(shù)據(jù)中選取組數(shù)據(jù)求線性回歸方程,再用剩下的組數(shù)據(jù)進(jìn)行檢驗(yàn).檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對(duì)應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)的差,若差值的絕對(duì)值不超過(guò),則稱所求線性回歸方程是“恰當(dāng)回歸方程”.

(1)從這組數(shù)據(jù)中隨機(jī)選取組數(shù)據(jù)后,求剩下的組數(shù)據(jù)的間隔時(shí)間之差大于的概率;

(2)若選取的是后面組數(shù)據(jù),求關(guān)于的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”;

(3)在(2)的條件下,為了使等候的乘客不超過(guò)人,則間隔時(shí)間最多可以設(shè)置為多少分鐘?(精確到整數(shù))

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】日,某地援鄂醫(yī)護(hù)人員,,,,,人(其中是隊(duì)長(zhǎng))圓滿完成抗擊新冠肺炎疫情任務(wù)返回本地,他們受到當(dāng)?shù)厝罕娕c領(lǐng)導(dǎo)的熱烈歡迎.當(dāng)?shù)孛襟w為了宣傳他們的優(yōu)秀事跡,讓這名醫(yī)護(hù)人員和接見(jiàn)他們的一位領(lǐng)導(dǎo)共人站一排進(jìn)行拍照,則領(lǐng)導(dǎo)和隊(duì)長(zhǎng)站在兩端且相鄰,而不相鄰的排法種數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cy2=2px過(guò)點(diǎn)P(1,1).過(guò)點(diǎn)(0, )作直線l與拋物線C交于不同的兩點(diǎn)M,N,過(guò)點(diǎn)Mx軸的垂線分別與直線OP,ON交于點(diǎn)A,B,其中O為原點(diǎn).

(Ⅰ)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

(Ⅱ)求證:A為線段BM的中點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案