A. | (x+2)2+y2=17 | B. | (x-2)2+y2=13 | C. | (x-1)2+y2=20 | D. | (x+1)2+y2=40 |
分析 設(shè)圓心為M(a,0),由|MA|=|MB|求得a的值,可得圓心坐標(biāo)以及半徑的值,從而求得圓的方程.
解答 解:∵圓C的圓心在x軸上,設(shè)圓心為M(a,0),由圓過點(diǎn)A(5,2),B(-1,4),
由|MA|=|MB|可得 MA2=MB2,即(a-5)2+4=(a+1)2+16,求得a=1,
可得圓心為M( 1,0),半徑為|MA|=$\sqrt{20}$,故圓的方程為 (x-1)2+y2=20,
故選C.
點(diǎn)評 本題主要考查求圓的標(biāo)準(zhǔn)方程,求出圓心的坐標(biāo),是解題的關(guān)鍵,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)y=f(x)在(-∞,0)上單調(diào)遞增 | B. | 函數(shù)y=f(x)的遞減區(qū)間為(3,5) | ||
C. | 函數(shù)y=f(x)在x=0處取得極大值 | D. | 函數(shù)y=f(x)在x=5處取得極小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 200m2 | B. | 360m2 | C. | 400m2 | D. | 480m2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 120° | B. | 90° | C. | 60° | D. | 45° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com