【題目】已知橢圓:的離心率為,右焦點到直線的距離為.
(1)求橢圓的方程;
(2)過點作與坐標(biāo)軸不垂直的直線與橢圓交于,兩點,在軸上是否存在點,使得為正三角形,若存在,求出點的坐標(biāo);若不存在,請說明理由.
【答案】(1).(2)在軸上是存在點,坐標(biāo)為,
【解析】
(1)因為橢圓:的離心率為,可得,右焦點到直線的距離為,故,即可求得答案;
(2)設(shè)線段的中點,若是正三角形,且,結(jié)合已知,即可求得答案.
(1)橢圓:的離心率為
,可得
故
右焦點到直線的距離為.
①當(dāng)時,將代入
可得
整理可得:
即
解得:(舍去)或
由,可得,即
根據(jù)
可得:
②當(dāng)時,將代入
可得
整理可得:
方程無解
(2)過點作與坐標(biāo)軸不垂直的直線
設(shè)直線的方程為
聯(lián)立直線的方程和橢圓方程可得:,消掉
可得:
根據(jù)韋達定理可得:
設(shè)線段的中點,
則,
是正三角形
且
根據(jù),可得
由可得:
可得:,解得:
設(shè),將其代入
可得
可得
故在軸上是存在點,使得為正三角形,坐標(biāo)為,
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時,,給出下列命題:
①當(dāng)時,;
②函數(shù)有2個零點;
③的解集為;
④,,都有.
其中真命題的個數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C所對邊分別為a、b、c,且2acosC=2b-c.
(1)求角A的大。
(2)若AB=3,AC邊上的中線SD的長為,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線方程為,求的值;
(2)當(dāng)時,求證:;
(3)設(shè)函數(shù),其中為實常數(shù),試討論函數(shù)的零點個數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點分別為和,由4個點、、和組成了一個高為,面積為的等腰梯形.
(1)求橢圓的方程;
(2)過點的直線和橢圓交于兩點、,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】人們隨著生活水平的提高,健康意識逐步加強,健身開始走進人們生活,在健身方面投入越來越多,為了調(diào)查參與健身的年輕人一年健身的花費情況,研究人員在地區(qū)隨機抽取了參加健身的青年男性、女性各50名,將其花費統(tǒng)計情況如下表所示:
分組(花費) | 頻數(shù) |
6 | |
22 | |
25 | |
35 | |
8 | |
4 |
男性 | 女性 | 合計 | |
健身花費不超過2400元 | 23 | ||
健身花費超過2400元 | 20 | ||
合計 |
(1)完善二聯(lián)表中的數(shù)據(jù);
(2)根據(jù)表中的數(shù)據(jù)情況,判斷是否有99%的把握認為健身的花費超過2400元與性別有關(guān);
(3)求這100名被調(diào)查者一年健身的平均花費(同一組數(shù)據(jù)用該區(qū)間的中點值代替).
附:
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.01 |
k | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中為自然對數(shù)的底數(shù).
(1)當(dāng)時,判斷函數(shù)的單調(diào)性;
(2)若直線是函數(shù)的切線,求實數(shù)的值;
(3)當(dāng)時,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com