20.橢圓$\frac{x^2}{16}+\frac{y^2}{25}=1$的短軸長(zhǎng)為( 。
A.4B.5C.6D.8

分析 由橢圓$\frac{x^2}{16}+\frac{y^2}{25}=1$,焦點(diǎn)在y軸上,則a=5,b=4,則短軸長(zhǎng)2b=8.

解答 解:由橢圓$\frac{x^2}{16}+\frac{y^2}{25}=1$,焦點(diǎn)在y軸上,則a=5,b=4,
則短軸長(zhǎng)2b=8,
故選D.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,考查橢圓的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)x,y滿足約束條件組$\left\{\begin{array}{l}{2x-y-2≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y的最大值為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.-2log510-log50.25+2=( 。
A.0B.-1C.-2D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,且滿足an+1=Sn+2n+1(n∈N*).
(1)證明數(shù)列{$\frac{{S}_{n}}{{a}_{n}}$}為等差數(shù)列.
(2)求S1+S2+…+Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.解不等式ax2-(a-1)x-1≤0(a∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)非空集合A={x|m-1≤x≤2m+1},B={x|-4≤x≤2}若m=2,則A∩B=[1,2];若A⊆A∩B,則實(shí)數(shù)m的取值范圍是[-2,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.等差數(shù)列{an}前n項(xiàng)和為Sn,${S_p}=\frac{p}{q}$,${S_q}=\frac{q}{p}$(p≠q),則Sp+q的值是(  )
A.大于4B.小于4C.等于4D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若“a>b”,則“a3>b3”是真命題(填:真、假)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,ABCD是邊長(zhǎng)為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF=3$\sqrt{6}$.
(1)(文理)求證:AC⊥平面BDE;
(2)(理)求二面角F-BE-D的余弦值;
(文)求三棱錐F-BDE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案