定義一種運(yùn)算“*”對(duì)于正整數(shù)滿足以下運(yùn)算性質(zhì):(1)2*2014=1;(2)(2n+2)*2014=3×[(2n)*2014],則2012*2014=
 
分析:設(shè)(2n)*2014=an,可得an+1=3an,從而可求an,即可求出結(jié)論.
解答:解:設(shè)(2n)*2014=an,則(2n+2)*2014=an+1,且a1=1,
∴an+1=3an,
∴an=3n-1
即(2n)*2014=3n-1,
∴2012*2014=31006-1=31005
故答案為:31005
點(diǎn)評(píng):本題考查運(yùn)算“*”對(duì)于正整數(shù)滿足的運(yùn)算性質(zhì),正確理解新定義,合理地運(yùn)用新定義的性質(zhì)求解是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在實(shí)數(shù)集R中定義一種運(yùn)算“*”,對(duì)任意a,b∈R,a*b為唯一確定的實(shí)數(shù),且具有性質(zhì):
(1)對(duì)任意a,b∈R,a*b=b*a;
(2)對(duì)任意a∈R,a*0=a;
(3)對(duì)任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
關(guān)于函數(shù)f(x)=(2x)*
1
2x
的性質(zhì),有如下說法:
①函數(shù)f(x)的最小值為3;
②函數(shù)f(x)為奇函數(shù);
③函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-
1
2
),(
1
2
,+∞)

其中所有正確說法的個(gè)數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義一種運(yùn)算“※”,對(duì)任意正整數(shù)n滿足:(1)1※1=3,(2)(n+1)※1=3+n※1,則2004※1的值為
6012
6012

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•內(nèi)江二模)在實(shí)數(shù)集R中定義一種運(yùn)算“⊕”,對(duì)任意a,b⊕b為唯一確定的實(shí)數(shù)且具有性質(zhì):
(1)對(duì)任意a,b∈R,有a⊕b=b⊕a;
(2)對(duì)任意a∈R,有a⊕0=a;
(3)對(duì)任意a,b,c∈R,有(a⊕b)⊕c=c⊕(ab)+(a⊕c)+(c⊕b)-2c.
已知函數(shù)f(x)=x⊕
1x
,則下列命題中:
(1)函數(shù)f(x)的最小值為3;
(2)函數(shù)f(x)為奇函數(shù);
(3)函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-1)、(1,+∞).
其中正確例題的序號(hào)有
(3)
(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•內(nèi)江二模)在實(shí)數(shù)集R中定義一種運(yùn)算“⊕”,對(duì)任意a,b∈R,a⊕b為唯一確定的實(shí)數(shù)且具有性質(zhì):
(1)對(duì)任意a,b∈R,有a⊕b=b⊕a;
(2)對(duì)任意a∈R,有a⊕0=a;
(3)對(duì)任意a,b,c∈R,有(a⊕b)⊕c=c⊕(ab)+(a⊕c)+(c⊕b)-2c.
已知函數(shù)f(x)=x2
1x2
,則下列命題中:
(1)函數(shù)f(x)的最小值為3;
(2)函數(shù)f(x)為奇函數(shù);
(3)函數(shù)f(x)的單調(diào)遞增區(qū)間為(-1,0)、(1,+∞).
其中正確例題的序號(hào)有
(1)(3)
(1)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省青島市高三統(tǒng)一質(zhì)量檢測(cè)考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

在實(shí)數(shù)集中定義一種運(yùn)算“”,對(duì)任意,為唯一確定的實(shí)數(shù),且具有性質(zhì):

1)對(duì)任意;

2)對(duì)任意,

關(guān)于函數(shù)的性質(zhì),有如下說法:①函數(shù)的最小值為;②函數(shù)為偶函數(shù);③函數(shù)的單調(diào)遞增區(qū)間為

其中所有正確說法的個(gè)數(shù)為( )

A B C D

 

查看答案和解析>>

同步練習(xí)冊(cè)答案