8.已知正方體ABCD-A1B1C1D1(如圖),A1P=A1Q=A1R(P,Q,R在正方體的棱上),求證:平面PQR∥平面C1BD.

分析 連結(jié)AD1、AB1、B1D1,由已知得RQ∥BD,PQ∥C1D,由此能證明平面PQR∥平面C1BD.

解答 證明:連結(jié)AD1、AB1、B1D1
∵正方體ABCD-A1B1C1D1(如圖),A1P=A1Q=A1R(P,Q,R在正方體的棱上),
∴PQ∥AB1,DC1∥AB1,RQ∥D1B1,BD∥B1D1,
∴RQ∥BD,PQ∥C1D,
∵PR∩QR=R,BD∩BC1=B,
∴平面PQR∥平面C1BD.

點(diǎn)評 本題考查面面平行的證明,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在四棱錐中,底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD,G、H分別為AD、BC中點(diǎn).證明:
(1)AB⊥平面VAD;
(2)平面VGH⊥平面VBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<$\frac{π}{2}$)的部分圖象如圖,且過點(diǎn)$A(\frac{7π}{12},0),B(0,-1)$,則以下結(jié)論不正確的是( 。
A.f(x)的圖象關(guān)于直線$x=-\frac{π}{6}$ 對稱B.f(x)的圖象關(guān)于點(diǎn)$(\frac{π}{12},0)$對稱
C.f(x) 在$[-\frac{π}{2},-\frac{π}{3}]$ 上是增函數(shù)D.f(x) 在$[\frac{4π}{3},\frac{3π}{2}]$ 上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.定義在[-2,2]上的偶函數(shù)f(x),當(dāng)x≥0時(shí),f(x)為減函數(shù),若f(1-m)<f(m),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.證明:f(x)=($\frac{1}{2}$x2+x)lnx-$\frac{1}{3}$x3-$\frac{1}{4}$x2在(0,+∞)是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一輛價(jià)值30萬元的汽車,按每年20%的折舊率折舊,設(shè)x年后汽車價(jià)值y萬元,則y與x的函數(shù)解析式為( 。
A.y=30×0.2xB.y=30×0.8xC.y=30×1.2xD.y=20×0.3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.定義在R上的奇函數(shù)f(x),對任意a,b∈R,a+b≠0,都有$\frac{f(a)+f(b)}{a+b}$>0.
(1)試證明f(x)為R上的增函數(shù);
(2)若不等式f(kx2-6)+f(k-2x)<0在k∈[-1,1]上恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)f(x)=$\left\{\begin{array}{l}{x{e}^{-{x}^{2}},x≥0}\\{\frac{1}{1+cosx},-1<x<0}\end{array}\right.$,求${∫}_{1}^{4}$f(x-2)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x)=x2+3x-5lnx,則f(x)的遞減區(qū)間為( 。
A.(-$\frac{5}{2}$,1)B.(-∞,-$\frac{5}{2}$),(1,+∞)C.(1,+∞)D.(0,1)

查看答案和解析>>

同步練習(xí)冊答案