【題目】如圖1,已知直角梯形ABCD中,,AB//DC,AB⊥AD,E為CD的中點,沿AE把△DAE折起到△PAE的位置(D折后變?yōu)?/span>P),使得PB=2,如圖2.
(Ⅰ)求證:平面PAE⊥平面ABCE;
(Ⅱ)求點B到平面PCE的距離.
【答案】(1)見解析(2)
【解析】試題分析:取的中點,連接,,,可知,為等腰直角三角形,證得,,再由勾股定理證得,即可證明 利用等體積法,即可求點到平面的距離
解析:(Ⅰ)如圖,取AE的中點O,連接PO,OB,BE.由于在平面圖形中,如題圖1,連接BD,BE,易知四邊形ABED為正方形, ∴在立體圖形中,△PAE,△BAE為等腰直角三角形,
∴PO⊥AE,OB⊥AE,PO=OB=,
∵PB=2,∴,
∴PO⊥OB
又,∴平面PO⊥平面ABCE,
∵PO平面PAE,∴平面PAE⊥平面ABCD
(Ⅱ)由(Ⅰ)可知,PO⊥AE,OB⊥AE,,故AE⊥平面POB.
∵PB平面POB,∴AE⊥PB,又BC//AE,∴BC⊥PB.
在Rt△PBC中,
在△PEC中,PE=CE=2,
∴
設點B到平面PCE的距離為d,由,
得
科目:高中數(shù)學 來源: 題型:
【題目】[2018·石家莊一檢]已知函數(shù).
(1)若,求函數(shù)的圖像在點處的切線方程;
(2)若函數(shù)有兩個極值點,,且,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】二進制規(guī)定:每個二進制數(shù)由若干個0、1組成,且最高位數(shù)字必須為1.若在二進制中,是所有位二進制數(shù)構成的集合,對于,,表示和對應位置上數(shù)字不同的位置個數(shù).例如當,時,當,時.
(1)令,求所有滿足,且的的個數(shù);
(2)給定,對于集合中的所有,求的和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系.
(1)在極坐標系下,設曲線與射線和射線分別交于,兩點,求的面積;
(2)在直角坐標系下,直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線與橢圓相交于兩點,與軸, 軸分別相交于點和點,且,點是點關于軸的對稱點, 的延長線交橢圓于點,過點分別做軸的垂線,垂足分別為.
(1) 若橢圓的左、右焦點與其短軸的一個端點是正三角形的三個頂點,點在橢圓上,求橢圓的方程;
(2)當時,若點平分線段,求橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線a與平面所成角的為30o,直線b在平面內(nèi),且與b異面,若直線a與直線b所成的角為,則( )
A. 0<≤30 B. 0<≤90 C. 30≤≤90 D. 30≤≤180
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設點,直線和曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面,為直角梯形,與相交于點,,,,三棱錐的體積為9.
(1)求的值;
(2)過點的平面平行于平面,與棱,,,分別相交于點,求截面的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com