在平面直角坐標(biāo)系xOy中,雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩條漸近線與拋物線y2=4x的準(zhǔn)線相交于A,B兩點(diǎn).若△AOB的面積為2,則雙曲線的離心率為
 
考點(diǎn):雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由已知條件,分別求出拋物線的準(zhǔn)線方程和雙曲線的漸近線,由三角形的面積求出b=2a,由此能求出雙曲線的離心率.
解答: 解:∵y2=4x的準(zhǔn)線方程為l:x=-1,
雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩條漸近線分別為:
y=
b
a
x
,y=-
b
a
x
,
雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩條漸近線與拋物線y2=4x的準(zhǔn)線相交于A,B兩點(diǎn),
△AOB的面積為2,
1
2
×|-1|×|AB|
=2,A(-1,-
b
a
),B(-1,
b
a
),
b
a
=2
,即b=2a,
∴c=
a2+4a2
=
5
a,
∴e=
c
a
=
5

故答案為:
5
點(diǎn)評:本題考查雙曲線的離心率的求法,是中檔題,解題時要熟練掌握拋物線、雙曲線的簡單性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=1-2sin2x是( 。
A、最小正周期為π的奇函數(shù)
B、最小正周期為π的偶函數(shù)
C、最小正周期為2π的奇函數(shù)
D、最小正周期為2π的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x+
1
x
)=x2+(
1
x
2(x>0),求函數(shù)f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
0≤x≤
2
y≤2
x≤
2
y
,則z=
2x+y-1
x-1
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中錯誤的是
 
.(填寫錯誤命題的序號)
(1)若一直線垂直于一平面,則此直線必垂直于這一平面內(nèi)所有直線.
(2)若一平面經(jīng)過另一平面的一條垂線,則這兩個平面互相垂直.
(3)若一條直線平行于一個平面內(nèi)的一條直線,則此直線平行于這個平面.
(4)若兩個平面互相平行,則分別在這兩個平面內(nèi)的兩條直線必互相平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二項(xiàng)式(x-
1
x2
)6
展開式中的常數(shù)項(xiàng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從0,1,2,3,4,5這6個數(shù)字中任意取4個數(shù)字組成一個沒有重復(fù)數(shù)字且能被3整除的四位數(shù),這樣的四位數(shù)有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、
224π
3
B、
56
3
π
C、(16+4
2
D、
28
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于用斜二測畫法畫直觀圖的說法中,錯誤的是( 。
A、用斜二測畫法畫出直觀圖是在平行投影下畫出的空間圖形
B、水平放置的矩形的直觀圖是平行四邊形
C、水平放置的圓的直觀圖是橢圓
D、幾何體的直觀圖的長、寬、高的比例相同

查看答案和解析>>

同步練習(xí)冊答案