已知函數(shù)f(x)=log0.5數(shù)學(xué)公式
(1)判斷f(x)的奇偶性;     
(2)求f(x)的值域;      
(3)求f(x)的增區(qū)間.

解:(1)∵函數(shù)f(x)=log0.5,
∴4-x2>0,解得-2<x<2,
∵f(-x)=log0.5(4-x2)=f(x),
∴f(x)是偶函數(shù).
(2)設(shè)f(x)=log0.5=log0.5t,則t=4-x2,
∵-2<x<2,∴0<t≤4,
∴當(dāng)x=0,即t=4時(shí),f(x)取最小值-2,
∴f(x)的值域?yàn)閇-2,+∞).
(3)∵函數(shù)f(x)=log0.5
∴4-x2>0,解得-2<x<2,
∵t=4-x2是開(kāi)口向下,對(duì)稱軸為x=0的拋物線,
∴f(x)的增區(qū)間為[0,2).
分析:(1)由函數(shù)f(x)=log0.5,先求出它的定義域,再求出f(-x),能得到f(x)是偶函數(shù).
(2)設(shè)f(x)=log0.5=log0.5t,則t=4-x2,由-2<x<2,知0<t≤4,由此能求出f(x)的值域.
(3)由函數(shù)f(x)=log0.5,-2<x<2,利用復(fù)合函數(shù)的單調(diào)性的性質(zhì)能求出f(x)的增區(qū)間.
點(diǎn)評(píng):本題考查對(duì)數(shù)函數(shù)的奇偶性、值域和單調(diào)區(qū)間的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對(duì)任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱直線AB存在“中值伴侶切線”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過(guò)點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案