精英家教網 > 高中數學 > 題目詳情

【題目】各項均為正數的數列{an}中,a1=1,Sn是數列{an}的前n項和,對任意n∈N* , 有2Sn=2pan2+pan﹣p(p∈R)
(1)求常數p的值;
(2)求數列{an}的通項公式;
(3)記bn= ,求數列{bn}的前n項和T.

【答案】
(1)解:∵a1=1,對任意的n∈N*,有2Sn=2pan2+pan﹣p

∴2a1=2pa12+pa1﹣p,即2=2p+p﹣p,解得p=1


(2)解:2Sn=2an2+an﹣1,①

2Sn1=2an12+an1﹣1,(n≥2),②

①﹣②即得(an﹣an1 )(an+an1)=0,

因為an+an1≠0,所以an﹣an1 =0,


(3)解:2Sn=2an2+an﹣1=2×

∴Sn= ,

=n2n

Tn=1×21+2×22+…+n2n

又2Tn=1×22+2×23+…+(n﹣1)2n+n2n+1

④﹣③Tn=﹣1×21﹣(22+23+…+2n)+n2n+1=(n﹣1)2n+1+2

∴Tn=(n﹣1)2n+1+2


【解析】(1)根據a1=1,對任意的n∈N*,有2Sn=2pan2+pan﹣p,令n=1,解方程即可求得結果;(2)由2Sn=2an2+an﹣1,知2Sn1=2an12+an1﹣1,(n≥2),所以(an﹣an1﹣1)(an+an1)=0,由此能求出數列{an}的通項公式.(3)根據 求出數列{bn}的通項公式,利用錯位相減法即可求得結果.
【考點精析】解答此題的關鍵在于理解數列的前n項和的相關知識,掌握數列{an}的前n項和sn與通項an的關系,以及對數列的通項公式的理解,了解如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+(1﹣k)x﹣k恰有一個零點在區(qū)間(2,3)內,則實數k的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某職稱晉級評定機構對參加某次專業(yè)技術考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失。M分為100分).

(1)求圖中的值;

(2)估計該次考試的平均分(同一組中的數據用該組的區(qū)間中點值代表);

(3)根據已知條件完成下面列聯表,并判斷能否有85%的把握認為“晉級成功”與性別有關?

(參考公式: ,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】x2y2=1上任意一點P,過點P作兩直線分別交圓于A,B兩點,且∠APB=60°,則|PA|2+|PB|2的取值范圍為___

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線 (t為參數), ( 為參數).
(1)化 , 的方程為普通方程,并說明它們分別表示什么曲線;
(2)過曲線 的左頂點且傾斜角為 的直線 交曲線 兩點,求

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨機詢問某大學40名不同性別的大學生在購買食物時是否讀營養(yǎng)說明,得到如下列聯表:

總計

讀營養(yǎng)說明

16

8

24

不讀營養(yǎng)說明

4

12

16

總計

20

20

40

(1)根據以上列聯表進行獨立性檢驗,能否在犯錯誤的概率不超過0.01的前提下認為性別與是否讀營養(yǎng)說明之間有關系?

(2)從被詢問的16名不讀營養(yǎng)說明的大學生中,隨機抽取2名學生,求抽到男生人數的分布列及其均值(即數學期望).

(注: ,其中為樣本容量)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線 (t為參數).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的坐標方程為
(1)將曲線C的極坐標方程化為直坐標方程;
(2)設點M的直角坐標為 ,直線l與曲線C的交點為A,B,求|MA||MB|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左焦點的離心率為的等比中項.

(1)求曲線的方程;

(2)傾斜角為的直線過原點且與交于兩點,傾斜角為的直線過且與交于兩點,若,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數,且當x<0時,
(1)求f(x)的表達式;
(2)判斷并證明函數f(x)在區(qū)間(0,+∞)上的單調性.

查看答案和解析>>

同步練習冊答案