函數(shù)f(x)=數(shù)學(xué)公式的最大值為________.


分析:先求導(dǎo)函數(shù),再確定函數(shù)的單調(diào)性,從而可求函數(shù)的最大值.
解答:求導(dǎo)函數(shù)
由f′(x)=0可得1-lnx=0
∴x=e
∵x∈(0,e),f′(x)>0,x∈(e,+∞),f′(x)<0,
∴x=e時(shí),函數(shù)f(x)=取得最大值為
故答案為:
點(diǎn)評:本題主要考查利用導(dǎo)數(shù)求函數(shù)的最值,解題的關(guān)鍵是利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,從而求出函數(shù)的最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義一種運(yùn)算a⊕b=
a,a≤b
b,a>b
,令f(x)=(cos2x+sinx)⊕
5
4
,且x∈[0,
π
2
],則函數(shù)f(x-
π
2
)的最大值是(  )
A、
5
4
B、1
C、-1
D、-
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
lnx
x
的最大值為
1
e
1
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•大興區(qū)一模)函數(shù)f(x)=cosxsinx的最大值是
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•濱州一模)定義一種運(yùn)算a⊕b=
a,a≤b
b,a>b
,令f(x)=(cos2x+sinx)⊕
3
2
,且x∈[0,
π
2
],則函數(shù)f(x-
π
2
)的最大值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sinxcosx的最大值是
1
2
1
2

查看答案和解析>>

同步練習(xí)冊答案