【題目】滕州市教育局為了解學(xué)生網(wǎng)絡(luò)教學(xué)期間的學(xué)習(xí)情況,從初中及高中共抽取了50名學(xué)生,對他們每天平均學(xué)習(xí)時(shí)間進(jìn)行統(tǒng)計(jì).請根據(jù)下面的各班人數(shù)統(tǒng)計(jì)表和學(xué)習(xí)時(shí)間的頻率分布直方圖解決下列問題:

年級(jí)

人數(shù)

初一

4

初二

4

初三

6

高一

12

高二

6

高三

18

合計(jì)

50

1)抽查的50人中,每天平均學(xué)習(xí)時(shí)間為68小時(shí)的人數(shù)有多少?

2)經(jīng)調(diào)查,每天平均學(xué)習(xí)時(shí)間不少于6小時(shí)的學(xué)生均來自高中.現(xiàn)采用分層抽樣的方法,從學(xué)習(xí)時(shí)間不少于6小時(shí)的學(xué)生中隨機(jī)抽取6名學(xué)生進(jìn)行問卷調(diào)查,求這三個(gè)年級(jí)各抽取了多少名學(xué)生;

3)在(2)抽取的6名學(xué)生中隨機(jī)選取2人進(jìn)行訪談,求這2名學(xué)生來自不同年級(jí)的概率.

【答案】118人;(2)從高中三個(gè)年級(jí)依次抽取2名學(xué)生,1名學(xué)生,3名學(xué)生;(3

【解析】

1)根據(jù)頻率分布直方圖,可求得學(xué)習(xí)時(shí)間為68小時(shí)的頻率,進(jìn)而得學(xué)習(xí)時(shí)間為68小時(shí)的人數(shù).

2)根據(jù)分層抽樣特征,即可確定在高中三個(gè)年級(jí)依次抽人數(shù).

3)設(shè)高一的2名學(xué)生為,高二的1名學(xué)生為,高三的3名學(xué)生為,,.利用列舉法得所有可能,進(jìn)而求得2名學(xué)生來自不同年級(jí)的概率.

1)由直方圖知,學(xué)習(xí)時(shí)間為68小時(shí)的頻率為,

∴學(xué)習(xí)時(shí)間為68小時(shí)的人數(shù)為(人);

2)由直方圖可得,學(xué)習(xí)時(shí)間不少于6小時(shí)的學(xué)生有人.

∵從中抽取6名學(xué)生的抽取比例為,高中三個(gè)年級(jí)的人數(shù)分別為126、18,

∴從高中三個(gè)年級(jí)依次抽取2名學(xué)生,1名學(xué)生,3名學(xué)生;

3)設(shè)高一的2名學(xué)生為高二的1名學(xué)生為,高三的3名學(xué)生為,,

則從6名學(xué)生中選取2人所有可能的情形有,,,,,,,,,,,,共15種可能.

其中2名學(xué)生來自不同年級(jí)的有,,,,,,,,,共11種情形,

故所求概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,則下列結(jié)論正確的是(

A.直線的傾斜角是B.若直線

C.點(diǎn)到直線的距離是D.與直線平行的直線方程是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點(diǎn)處與直線相切,求的值;

(2)若函數(shù)有兩個(gè)零點(diǎn),試判斷的符號(hào),并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線 為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)過點(diǎn)且與直線平行的直線, 兩點(diǎn),求點(diǎn), 兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線和虛線畫出的是某幾何體的三視圖,則該幾何休的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,直線的極坐標(biāo)方程為,現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).

(1)求直線的直角坐標(biāo)方程和曲線的普通方程;

(2)若曲線為曲線關(guān)于直線的對稱曲線,點(diǎn)分別為曲線、曲線上的動(dòng)點(diǎn),點(diǎn)坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱中,,,分別是,的中點(diǎn),,則所成的角為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線是過點(diǎn),傾斜角為的直線,以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

(Ⅰ)求曲線的普通方程和曲線的一個(gè)參數(shù)方程;

(Ⅱ)曲線與曲線相交于, 兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M的圓心Mx軸上,半徑為,直線被圓M截得的弦長為,且圓心M在直線l的上方.

1)求圓的方程;

2)設(shè),若圓M的內(nèi)切圓,求AC,BC邊所在直線的斜率(用t表示);

3)在(2)的條件下求的面積S的最大值及對應(yīng)的t.

查看答案和解析>>

同步練習(xí)冊答案