【題目】設(shè)集合U={1,2,…,100},TU.對數(shù)列{an}(n∈N*),規(guī)定:
①若T=,則ST=0;
②若T={n1 , n2 , …,nk},則ST=a +a +…+a
例如:當an=2n,T={1,3,5}時,ST=a1+a3+a5=2+6+10=18.
已知等比數(shù)列{an}(n∈N*),a1=1,且當T={2,3}時,ST=12,求數(shù)列{an}的通項公式.

【答案】解:∵等比數(shù)列{an}(n∈N*),a1=1,且當T={2,3}時,ST=12,

∴a2+a3=12,即q+q2=12,

解得q=3或q=﹣4,

∴當q=3時,an=a =3n﹣1,

當q=﹣4時,an=a =(﹣4)n﹣1

∴數(shù)列{an}的通項公式為


【解析】由題意可得當T={2,3}時,ST=12,∴a2+a3=12,即q+q2=12,

解得q=3或q=﹣4,∴當q=3時,an=a =3n﹣1,

當q=﹣4時,an=a =(﹣4)n﹣1,∴數(shù)列{an}的通項公式為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù) 沒有零點,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中, ,O為平面內(nèi)一點,且 ,M為劣弧 上一動點,且 ,則p+q的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標系的原點O為極點,x軸正半軸為極軸,并在兩種坐標系中取相同的長度單位,已知直線l的參數(shù)方程為 ,(t為參數(shù),0<θ<π),曲線C的極坐標方程為ρsin2α﹣2cosα=0.
(1)求曲線C的直角坐標方程;
(2)設(shè)直線l與曲線C相交于A,B兩點,當θ變化時,求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sinxsin( ﹣x).
(Ⅰ)求f( )及f(x)的最小正周期T的值;
(Ⅱ)求f(x)在區(qū)間[﹣ , ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體ABCDEF中,四邊形ABCD為正方形,底面ABFE為直角梯形,∠ABF為直角, ,平面ABCD⊥平面ABFE.

(1)求證:DB⊥EC;
(2)若AE=AB,求二面角C﹣EF﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an}中,a3+a4=12,公差d=2,記數(shù)列{a2n﹣1}的前n項和為Sn
(1)求Sn
(2)設(shè)數(shù)列{ }的前n項和為Tn , 若a2 , a5 , am成等比數(shù)列,求Tm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是( )
A.若p∨q為真命題,則p∧q為真命題
B.“a>0,b>0”是“ ≥2”的充要條件
C.命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0”
D.命題p:x∈R,x2+x-1<0,則﹁p:x∈R,x2+x-1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x),且 ,則函數(shù)g(x)=lg x的圖象與函數(shù)f(x)的圖象的交點個數(shù)為( )
A.3
B.5
C.9
D.10

查看答案和解析>>

同步練習(xí)冊答案