(本小題滿分12分)
已知點R(-3,0),點P在y軸上,點Q在x軸的正半軸上,點M在直線PQ上 ,且滿足,.
(Ⅰ)當點P在y軸上移動時,求點M的軌跡C的方程;
(Ⅱ)設(shè)為軌跡C上兩點,且,N(1,0),求實數(shù),使,且.
(Ⅰ);(Ⅱ)。
【解析】
試題分析:(Ⅰ)設(shè)點M(x,y),由得P(0,),Q().
由得(3,)·(,)=0,即
又點Q在x軸的正半軸上,故點M的軌跡C的方程是.……6分
(Ⅱ)解法一:由題意可知N為拋物線C:y2=4x的焦點,且A、B為過焦點N的直線與拋物線C的兩個交點。
當直線AB斜率不存在時,得A(1,2),B(1,-2),|AB|,不合題意;……7分
當直線AB斜率存在且不為0時,設(shè),代入
得
則|AB|,解得 ………………10分
代入原方程得,由于,所以,
由,得 . …………………12分
解法二:由題設(shè)條件得
由(6)、(7)解得或,又,故
考點:直線與拋物線的綜合應(yīng)用;向量在幾何中的應(yīng)用;軌跡方程的求法。
點評:求曲線的軌跡方程是解析幾何的基本問題之一。本題主要考查利用“相關(guān)點法”求曲線的軌跡方程。相關(guān)點法:用動點Q的坐標x,y表示相關(guān)點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法.
科目:高中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com