精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形,。

(Ⅰ)求證:

(Ⅱ)設線段的中點為,在直線上是否存在一點,使得?若存在,請指出點的位置,并證明你的結論;若不存在,請說明理由;

(Ⅲ)求二面角的大小。

(Ⅰ)證明見解析。

(Ⅱ)為線段AE的中點,證明見解析。

(Ⅲ)arctan


解析:

本小題主要考查平面與平面垂直、直線與平面垂直、直線與平面平行、二面角等基礎知識,考查空間想象能力、邏輯推理能力和數學探究意識,考查應用向量知識解決數學問題的能力。

解法一:

(Ⅰ)因為平面⊥平面,平面

平面平面,

所以⊥平面

所以。

因為為等腰直角三角形,,

所以

又因為

所以,

,

所以⊥平面!4分

(Ⅱ)存在點,當為線段AE的中點時,PM∥平面

取BE的中點N,連接AN,MN,則MN∥=∥=PC

所以PMNC為平行四邊形,所以PM∥CN

因為CN在平面BCE內,PM不在平面BCE內,

所以PM∥平面BCE………………………………8分

(Ⅲ)由EA⊥AB,平面ABEF⊥平面ABCD,易知,EA⊥平面ABCD

作FG⊥AB,交BA的延長線于G,則FG∥EA。從而,FG⊥平面ABCD

作GH⊥BD于G,連結FH,則由三垂線定理知,BD⊥FH

因此,∠AEF為二面角F-BD-A的平面角

因為FA=FE, ∠AEF=45°,

所以∠AFE=90°,∠FAG=45°.

設AB=1,則AE=1,AF=。

FG=AF·sinFAG=

在Rt△FGH中,∠GBH=45°,BG=AB+AG=1+=,

GH=BG·sinGBH=·=

在Rt△FGH中,tanFHG= =

故二面角F-BD-A的大小為arctan……………………………12分

解法二:

(Ⅰ)因為△ABE為等腰直角三角形,AB=AE,

所以AE⊥AB.

又因為平面ABEF⊥平面ABCD,AE平面ABEF,

平面ABEF∩平面ABCD=AB,

所以AE⊥平面ABCD.

所以AE⊥AD.

因此,AD,AB,AE兩兩垂直,以A為坐標原點,建立 如圖所示的直角坐標系A-xyz.

設AB=1,則AE=1,B(0,1,0),D (1, 0, 0 ) ,

E ( 0, 0, 1 ), C ( 1, 1, 0 ).

因為FA=FE, ∠AEF = 45°,

所以∠AFE= 90°.

從而,.

所以,,.

,.

所以EF⊥BE, EF⊥BC.

因為BE平面BCE,BC∩BE=B ,

所以EF⊥平面BCE.

 (Ⅱ) M(0,0,).P(1, ,0).

從而=(,).

于是

所以PM⊥FE,又EF⊥平面BCE,直線PM不在平面BCE內,

故PM∥平面BCE………………………………8分

(Ⅲ) 設平面BDF的一個法向量為,并設=(x,y,z)

=(1,1,0),

     即

去y=1,則x=1,z=3,從=(0,0,3)

取平面ABD的一個法向量為=(0,0,1)

故二面角F-BD-A的大小為……………………………………12分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文) (本小題滿分12分已知函數y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數的值域和最小正周期;
(2)求函數的遞減區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)已知函數,且。①求的最大值及最小值;②求的在定義域上的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數分別占總數的、、.現有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案